
Real-Time Workshop®

Release Notes

The Real-Time Workshop 6.3 Release Notes describe the changes introduced
in the latest version of Real-Time Workshop®. The following topics are
discussed in these Release Notes:

• “New Features and Enhancements” on page 1-2

• “Limitations” on page 1-7

• “Major Bug Fixes” on page 1-19

• “Upgrading from an Earlier Release” on page 1-20

• “Known Software and Documentation Problems” on page 1-23

The Real-Time Workshop Release Notes also provide information about
earlier versions of the product, in case you are upgrading from a version that
was released prior to Version 6.3.

• Chapter 2, “Real-Time Workshop 6.2.1 Release Notes”

• Chapter 3, “Real-Time Workshop 6.2 Release Notes”

• Chapter 4, “Real-Time Workshop 6.1 Release Notes”

• Chapter 5, “Real-Time Workshop 6.0 Release Notes”

• Chapter 6, “Real-Time Workshop 5.1.1 Release Notes”

• Chapter 7, “Real-Time Workshop 5.1 Release Notes”

• Chapter 8, “Real-Time Workshop 5.0.1 Release Notes”

• Chapter 9, “Real-Time Workshop 5.0 Release Notes”

• Chapter 10, “Real-Time Workshop 4.1 Release Notes”

• Chapter 11, “Real-Time Workshop 4.0 Release Notes”

2

Contents

Real-Time Workshop 6.3 Release Notes

1
New Features and Enhancements 1-2

New rtw_precompile_libs Function 1-2
Support for Subsystem Latch Enhancements 1-3
Support for Variable Transport Delay Enhancements 1-3
C++ Target Language Support for Real-Time Windows

Target and External Mode . 1-4
Rapid Simulation Target Enhanced for Use with Distributed

Computing Toolbox . 1-4
Simulink Model and MATLAB Desktop Window Interaction

Enhanced . 1-4
Documentation Enhancements . 1-5

Limitations . 1-7
C++ Target Language Limitations . 1-7
Tunable Expression Limitations . 1-8
Limitations on Specifying Data Types in the Workspace

Explicitly . 1-9
Code Reuse Limitations . 1-10
Model Referencing Limitations . 1-11
External Mode Limitations . 1-12
Noninlined S-Function Parameter Type Limitations 1-14
S-Function Target Limitations . 1-14
Rapid Simulation Target Limitations 1-17
C-API Limitations . 1-17
Simulink Block Limitations . 1-18

Major Bug Fixes . 1-19

Upgrading from an Earlier Release 1-20
Customizations to Built-In Blocks . 1-20
Use slbuild Instead of rtwgen . 1-20
CustomStorageClass and StorageClass Properties

Initialized Differently . 1-20
rem Function No Longer Supports Tunable Arguments . . . 1-21

iii

Hardware Configuration for Pre-Version 6 Models 1-21

Known Software and Documentation Problems 1-23

Real-Time Workshop 6.2.1 Release Notes

2
Major Bug Fixes . 2-2

Real-Time Workshop 6.2 Release Notes

3
New Features and Enhancements 3-2

Model Advisor Enhancements . 3-2
Rate Transition Block Enhancements 3-3
Data Store Read Block Enhancement 3-4
C++ Target Language Support . 3-5
Support for Open Watcom 1.3 Compiler 3-9
New Configuration Option for Optimizing Floating-Point to

Integer Data Type Conversions . 3-9
Task Priority Block Parameters Renamed for

Consistency . 3-11
New RSim Target Configuration Option 3-11
LibManageAsyncCounter Function Added to asynclib.tlc

Library . 3-12
Enhanced Documentation on Integrating Legacy and

Custom Code with Generated Code 3-12
Documentation Improvements . 3-12

Major Bug Fixes . 3-14

iv Contents

Real-Time Workshop 6.1 Release Notes

4
Changes from the Previous Release 4-2

Major Bug Fixes . 4-2

Real-Time Workshop 6.0 Release Notes

5
New Features . 5-2

User Interface and Configuration Enhancements 5-2
Model Referencing (Model Block) Enhancements 5-9
Signal, Parameter Handling and Interfacing

Enhancements . 5-10
External Mode Enhancements . 5-18
Code Customization Enhancements 5-23
Timing-Related Enhancements . 5-29
GRT and ERT Target Unification . 5-34

Major Bug Fixes . 5-46

Upgrading from an Earlier Release 5-46
Global Data Identifiers for Targets Now Incorporate Model

Name . 5-46
Selecting a Target Programmatically 5-47
Accessing the rtwOptions Structure Correctly 5-48
Defining and Displaying Custom Target Options 5-48
SelectCallback Function for System Target Files 5-50
Supporting the Shared Utilities Directory in the Build

Process . 5-50
Model Reference Compatibility for Custom Targets 5-54
Macro Required in Template Make File for Tornado

Target . 5-55
Custom Storage Classes Can No Longer Be Used with GRT

Targets . 5-56
Accessing the Number of Sample Times from TLC for

Custom Targets . 5-56

v

TLC TLCFILES Built-in Now Returns the Full Path to
Model File Rather Than the Relative Path 5-57

ISSLPRMREF TLC Built-in Provides Support for
Parameter Sharing with Simulink 5-57

Additional Argument for TLC
GENERATE_FORMATTED_VALUE
Built-in . 5-57

Known Software and Documentation Problems 5-58
Real-Time Workshop Documentation Status 5-58
DSP Support Documentation Error 5-58
No Code Generation Support for 64-bit Integer Values . . . 5-59
Setting Environment Variable to Run Rapid Simulation

Target Executables on Solaris . 5-59
Limitation Affecting Rolling Regions of Discontiguous

Signals . 5-59
Code Generation Failure in Nested Directories Under

Windows 98 . 5-60
Turn the New Wrap Lines Option Off 5-60
ASAP2 File Generation Changes . 5-60
Custom Code in Configuration Sets Is Ignored by Certain

Targets . 5-61

Real-Time Workshop 5.1.1 Release Notes

6
New Features . 6-2

New -dr Command Line Switch in TLC Detects Cyclic
Record Creation . 6-2

Major Bug Fixes . 6-3

Upgrading from an Earlier Release 6-3
Inaccessible Signal Reporting . 6-3

vi Contents

Real-Time Workshop 5.1 Release Notes

7
Major Bug Fixes . 7-2

Real-Time Workshop 5.0.1 Release Notes

8
New Features . 8-2

Expanded Hook File Options . 8-2
Hook Files for Customizing Make Commands 8-3

Major Bug Fixes . 8-4

Real-Time Workshop 5.0 Release Notes

9
Release Summary . 9-2

New Features and Enhancements . 9-2
Major Bug Fixes . 9-4
Upgrading from an Earlier Release 9-6

New Features and Enhancements 9-7
Code Generation Infrastructure Enhancements 9-7
Code Generation Configuration Features 9-13
Block-level Enhancements . 9-18
Target and Mode Enhancements . 9-21
TLC, model.rtw, and Library Enhancements 9-22
Documentation Enhancements . 9-23

Major Bug Fixes . 9-26
ImportedExtern and ImportedExternPointer Storage Class

Data No Longer Initialized . 9-27
External Mode Properly Handles Systems with no

Uploadable Blocks . 9-27

vii

Nondefault Ports Now Usable for External Mode on Tornado
Platform . 9-28

Initialize Block Outputs Even If No Block Output Has
Storage Class Auto . 9-28

Code Is Generated Without Errors for Single Precision Data
Type Block Outputs . 9-28

Duplicate #include Statements No Longer Generated 9-28
Custom Storage Classes Ignored When Unlicensed for

Embedded Coder . 9-28
Erroneous Sample Time Warning Messages No Longer

Issued . 9-29
Discrete Integrator Block with Rolled Reset No Longer

Errors Out . 9-29
Rate Limiter Block Code Generation Limitation

Removed . 9-29
Multiport Switch with Expression Folding Limitation

Removed . 9-29
Pulse Generator Code Generation Failures Rectified 9-29
Stateflow I/O with ImportedExternPointer Storage Class

Now Handled Correctly . 9-30
Parameters for S-Function Target Lookup Blocks May Now

Be Made Tunable . 9-30
PreLookup Index Search Block Now Handles Discontiguous

Wide Input . 9-30
SimViewingDevice Subsystem No Longer Fails to Generate

Code . 9-30
Accelerator Now Works with GCC Compiler on UNIX 9-30
Expression Folding Behavior for Action Subsystems

Stabilized . 9-30
Dirty Flag No Longer Set During Code Generation 9-31
Subsystem Filenames Now Completely Checked for Illegal

Characters . 9-31
Sine Wave and Pulse Generator Blocks No Longer

Needlessly Use Absolute Time . 9-31
Generated Code for Action Subsystems Now Correctly

Guards Execution of Fixed in Minor Time Step Blocks . . 9-31
Report Error when Code Generation Requested for Models

with Algebraic Loops . 9-32

Platform Limitations for HP and IBM 9-33

Upgrading from an Earlier Release 9-33
Replacing Obsolete Header File #includes 9-33

viii Contents

Custom Code Blocks Moved from Simulink Library 9-33
Updating Custom TLC Code . 9-34
Upgrading Customized GRT and GRT-Malloc Targets to

Work with Release 13 . 9-34
The BlockInstanceData Function has been Deprecated . . . 9-36

Real-Time Workshop 4.1 Release Notes

10
Release Summary . 10-2

New Features . 10-3
Block Reduction Option On by Default 10-3
Buffer Reuse Code Generation Option 10-3
Build Directory Validation . 10-4
Build Subsystem Enhancements . 10-4
C API for Parameter Tuning Documented 10-4
Code Readability Improvements . 10-5
Control Flow Blocks Support . 10-5
Expression Folding . 10-5
External Mode Enhancements . 10-6
Generate Comments Option . 10-6
Include System Hierarchy in Identifiers 10-7
Rapid Simulation Target Supports Inline Parameters 10-7
S-Function Target Enhancements . 10-7
Storage Classes for Block States . 10-7
Support for tilde (~) in Filenames on UNIX Platforms 10-8
Target Language Compiler 4.1 . 10-8

Bug Fixes . 10-11
Block Reduction Crash Fixed . 10-11
Build Subsystem Gives Better Error Message for Function

Call Subsystems . 10-11
Check Consistency of Parameter Storage Class and Type

Qualifier . 10-11
Code Optimization for Unsigned Saturation and DeadZone

Blocks . 10-11
Correct Code Generation of Fixed-Point Blockset Blocks in

DSP Blockset Models . 10-12

ix

Correct Compilation with Green Hills and DDI
Compilers . 10-12

Fixed Build Error with Models Having Names Identical to
Windows NT Commands . 10-12

Fixed Error Copying Custom Code Blocks 10-12
Fixed Error in commonmaplib.tlc . 10-13
Fixed Name Clashes with Run-Time Library Functions . . 10-13
Improved Handling of Sample Times 10-13
Look-Up Table (n-D) Code Generation Bug Fix 10-13
Parenthesize Negative Numerics in Fcn Block

Expressions . 10-13
Removed Unnecessary Warnings and Declarations from

Generated Code . 10-13
Retain .rtw File Option Now Works in Accelerator Mode . . 10-14
S-Function Target Memory Allocation Bug Fix 10-14

Upgrading from an Earlier Release 10-15
RTWInfo Property Changes . 10-15
S-Function Target MEX-Files Must Be Rebuilt 10-16
TLC Compatibility Issues . 10-16

Real-Time Workshop 4.0 Release Notes

11
Release Summary . 11-2

New Features . 11-3
Real-Time Workshop Embedded Coder 11-3
Simulink Data Object Support . 11-3
ASAP2 Support . 11-3
Enhanced Real-Time Workshop Page 11-4
Other User Interface Enhancements 11-4
Advanced Options Page . 11-4
Model Parameter Configuration Dialog 11-4
Tunable Expressions Supported . 11-4
S-Function Target Enhancements . 11-5
External Mode Enhancements . 11-5
Build Directory . 11-6
Code Optimization Features . 11-6
Subsystem Based Code Generation 11-7

x Contents

Nonvirtual Subsystem Code Generation 11-7
Filename Extensions for Generated Files 11-8
hilite_system and Code Tracing . 11-8
Generation of Parameter Comments 11-8
Borland 5.4 Compiler Support . 11-9
Enhanced Makefile Include Path Rules 11-9
Target Language Compiler 4.0 . 11-9

Upgrading from an Earlier Release 11-12
Column-Major Matrix Ordering . 11-12
Including Generated Files . 11-12
Updating Release 11 Custom Targets 11-12
hilite_system Replaces locate_system 11-13
TLC Compatibility Issues . 11-13

xi

xii Contents

1

Real-Time Workshop 6.3
Release Notes

1 Real-Time Workshop 6.3 Release Notes

New Features and Enhancements
Real-Time Workshop Version 6.3 introduces the following new features and
enhancements.

• “New rtw_precompile_libs Function” on page 1-2

• “Support for Subsystem Latch Enhancements” on page 1-3

• “Support for Variable Transport Delay Enhancements” on page 1-3

• “C++ Target Language Support for Real-Time Windows Target and
External Mode ” on page 1-4

• “Rapid Simulation Target Enhanced for Use with Distributed Computing
Toolbox” on page 1-4

• “Simulink Model and MATLAB Desktop Window Interaction Enhanced”
on page 1-4

• “Documentation Enhancements” on page 1-5

New rtw_precompile_libs Function
Real-Time Workshop 6.3 introduces a new M-file function,
rtw_precompile_libs, which you can use to

• Precompile new or updated S-function libraries (MEX-files) for a model.
By precompiling S-function libraries, you can optimize system builds.
Once your precompiled libraries exist, Real-Time Workshop can omit
library compilation from subsequent builds. For models that use numerous
libraries, the time savings for build processing can be significant.

• Recompile precompiled libraries included as part of the Real-Time
Workshop product, such as rtwlib or dsplib. You might consider doing
this if you need to customize compiler settings for various platforms or
environments.

For details on using rtw_precompile_libs, see “Precompiling S-Function
Libraries” in the Real-Time Workshop documentation.

1-2

New Features and Enhancements

Support for Subsystem Latch Enhancements
This release of Real-Time Workshop supports Simulink® latch enhancements
for triggered and function-call subsystems discussed in “Input Port Latching
Enhancements” in the Simulink Release Notes.

• A renamed Inport block option is available for triggered subsystems. Latch
(buffer) input was renamed to Latch input by delaying outside signal
to better reflect the option’s purpose.

• A new option, Latch input by copying inside signal, was added for the
Inport block for use with function-call subsystems.

If you select Latch input by copying inside signal for a function-call
subsystem, Real-Time Workshop

• Preserves latches in generated code regardless of any optimizations that
might be set

• Places the code for latches at the start of a subsystem’s output/update
function

For more detail, also see the description of the Inport block.

Support for Variable Transport Delay Enhancements
Real-Time Workshop 6.3 supports new Simulink enhancements to the Variable
Transport Delay block. Prior to R14SP3, the block performed a variable time
delay function. The block has been enhanced to support both variable time
and variable transport delays with a new parameter Select delay type:

• For instances of the block in existing models, Select delay type is set
to Variable time delay to preserve the block’s variable time delay
behavior. In such cases, you can use the block as is, or consider changing
the parameter settings for transport delay behavior.

• The Simulink Library Browser now offers a Variable Time Delay block and
Variable Transport Delay block, which are instances of the original Variable
Transport Delay block. Both blocks have the delay type parameter, which
is preset depending on the type of block you include. In addition, for the
Variable Time Delay block, you can select a parameter for handling zero

1-3

1 Real-Time Workshop 6.3 Release Notes

delays. For the Variable Transport Delay block, you can specify a fixed
buffer size and absolute tolerance.

For more detail, see the descriptions of the Variable Time Delay and Variable
Transport Delay blocks.

C++ Target Language Support for Real-Time
Windows Target and External Mode
Real-Time Workshop 6.3 supports

• C++ code generation for Real-Time Windows target

• The use of external mode with executables it generates from C++ source
files

For more information on C++ target language support, see “Support for C and
C++ Code Generation” in the Real-Time Workshop documentation.

Rapid Simulation Target Enhanced for Use with
Distributed Computing Toolbox
The Rapid Simulation (RSim) target has been enhanced such that RSim
executables that specify a variable step solver do not check out a Simulink
license when run by a worker executing a task created by the Distributed
Computing Toolbox.

Simulink Model and MATLAB Desktop Window
Interaction Enhanced
In R14SP3, the interaction between Simulink model and MATLAB® desktop
windows during code generation has been enhanced such that the window
layering and input focus during code generation on Windows systems now
matches that of Linux systems.

Prior to R14SP3, if you had a Simulink model window on top of the MATLAB
desktop window on a Windows system, the MATLAB desktop window would
move on top of the model window when you generated code for that model.
When code generation was complete, the MATLAB desktop window would

1-4

New Features and Enhancements

retain input focus. This behavior intentionally differed from the behavior on
Linux systems, which kept the model window on top.

Documentation Enhancements
The following areas of the Real-Time Workshop documentation have been
corrected or improved:

• Help button on Real-Time Workshop pane and subpanes of the
Configuration Parameters dialog box — displays help that is specific to
the pane or subpane that is active

• Example index — expanded

• Feature limitations — moved to a new section, “Limitations” on page 1-7
in the Release Notes

• Model reference tutorial

• “Code Generation and the Build Process” — reorganized to reflect workflow
and make key topics more accessible

• “Controlling the Location and Names of Libraries During the Build
Process” — added as a new topic

• “Tunable Expressions in Masked Subsystems”

• “Profiling Generated Code” — added as a new topic

• “Reusable Code and Referenced Models”

• “Sharing Utility Functions”

• “Data Transfer Assumptions” for rate transitions

• “Writing Noninlined S-Functions”

• “Build Support for S-Functions”

• “Checksums and the S-Function Target” — added as a new topic

• “Specifying a New Signal Data File for a From File Block” when running a
rapid simulation

• “Generating ASAP2 and C-API Files” — added as a new topic

1-5

1 Real-Time Workshop 6.3 Release Notes

• “Simulink Block Support” — new reference appendix listing Real-Time
Workshop and Real-Time Workshop Embedded Coder block support for
blocks available in Simulink

• Target Language Compiler documentation

1-6

Limitations

Limitations
• “C++ Target Language Limitations” on page 1-7

• “Tunable Expression Limitations” on page 1-8

• “Limitations on Specifying Data Types in the Workspace Explicitly” on
page 1-9

• “Code Reuse Limitations” on page 1-10

• “Model Referencing Limitations” on page 1-11

• “External Mode Limitations” on page 1-12

• “Noninlined S-Function Parameter Type Limitations” on page 1-14

• “S-Function Target Limitations” on page 1-14

• “Rapid Simulation Target Limitations ” on page 1-17

• “C-API Limitations” on page 1-17

• “Simulink Block Limitations” on page 1-18

C++ Target Language Limitations

• Microsoft Visual C/C++ and GNU C/C++ have been fully tested with
Real-Time Workshop Version 6.3 and are fully supported on 32-bit Windows
and Linux platforms. However, Version 6.3 provides Beta C++ support only
for the Watcom, Borland®, and Intel® C/C++ compilers. These compilers
have not yet been fully evaluated for C++ compatibility with MathWorks
products.

• Real-Time Workshop provides Beta support for C++ code generation for
all blockset products. C++ code generation for the blockset products has
not yet been fully evaluated.

• Real-Time Workshop does not support C++ code generation for the
following:

Embedded Target for Infineon C166® Microcontrollers
Embedded Target for Motorola® MPC555
Embedded Target for Motorola® HC12
Embedded Target for OSEK/VDX®

Embedded Target for TI C2000™ DSP

1-7

1 Real-Time Workshop 6.3 Release Notes

Embedded Target for TI C6000™ DSP
SimDriveline
SimMechanics
SimPowerSystems
xPC Target

• When using the model reference feature, you cannot generate C code for
the parent model and C++ code for models that refer to the parent model.
However, you can generate C or C++ for both the parent and referring
models, or C++ code for the parent model and C code for referring models.

• The following Real-Time Workshop Embedded Coder dialog box fields
currently do not accept the .cpp extension. However, a .cpp file will be
generated if you specify a filename without an extension in these fields,
with C++ selected as the target language for your generated code.

- Data definition filename field on the Data Placement pane of the
Configuration Parameters dialog box

- Definition file field for an mpt data object in the Model Explorer

These restrictions on specifying .cpp will be removed in a future release.

Tunable Expression Limitations
Currently, there are certain limitations on the use of tunable variables
in expressions. When an expression described below as not supported is
encountered during code generation, a warning is issued and a nontunable
expression is generated in the code. The limitations on tunable expressions
are

• Complex expressions are not supported, except where the expression is
simply the name of a complex variable.

• The use of certain operators or functions in expressions containing tunable
operands is restricted. Restrictions are applied to four categories of
operators or functions, classified in the following table:

Category Operators or Functions

1 + - .* ./ < > <= >= == ~= & |

2 * /

1-8

Limitations

Category Operators or Functions

3 abs, acos, asin, atan, atan2, boolean, ceil, cos, cosh,
exp, floor, int8, int16, int32, log, log10, sign, sin,
sinh, sqrt, tan, tanh, uint8, uint16, uint32

4 : .^ ^ [] {} . \ .\ ' .' ; ,

The rules applying to each category are as follows:

- Category 1 is unrestricted. These operators can be used in tunable
expressions with any combination of scalar or vector operands.

- Category 2 operators can be used in tunable expressions where at least
one operand is a scalar. That is, scalar/scalar and scalar/matrix operand
combinations are supported, but not matrix/matrix.

- Category 3 lists all functions that support tunable arguments. Tunable
arguments passed to these functions retain their tunability. Tunable
arguments passed to any other functions lose their tunability.

- Category 4 operators are not supported.

Note The “dot” (structure membership) operator is not supported. This
means that expressions that include a structure member are not tunable.

• Expressions that include variables that were declared or modified in mask
initialization code are not tunable.

• The Fcn block does not support tunable expressions in code generation.

• Model workspace parameters can take on only the Auto storage class, and
thus are not tunable. To tune parameters in referenced models globally,
declare Simulink.Parameter objects for them in the MATLAB workspace
(not in model workspaces).

Limitations on Specifying Data Types in the
Workspace Explicitly
When you explicitly specify a data type other than double in the workspace,
blocks typecast the parameter to the appropriate data type. This is an issue
for blocks that use pointer access for their parameters. Blocks cannot use

1-9

1 Real-Time Workshop 6.3 Release Notes

pointer access if they need to typecast the parameter before using it (because
of a data type mismatch). Two possible solutions to this problem are

• Remove the explicit data type specification in the workspace for parameters
used in such blocks.

• Modify the block so that it uses the parameter with the same data type
as specified in the workspace. For example, the Lookup Table block uses
the data types of its input signal to determine the data type that it uses
to access the X-breakpoint parameter. You can prevent the block from
typecasting the run-time parameter by converting the input signal to the
data type used for X-breakpoints in the workspace. (Similarly, the output
signal is used to determine the data types used to access the lookup table’s
Y data.)

Code Reuse Limitations
Real-Time Workshop uses a checksum to determine whether subsystems
are identical. You cannot reuse subsystem code if instances of a subsystem
differ in the following ways:

• A port used by multiple instances of a subsystem has different sample
times, data types, complexity, frame status, or dimensions across the
instances

• Subsystems contain identical blocks with different names or parameter
settings

Some of these situations can arise even when subsystems are copied and
pasted within or between models or are manually constructed to be identical.
If you select Reusable function and Real-Time Workshop determines that
code for a subsystem cannot be reused, it generates a separate function that is
not reused. The code generation report can show that the separate function
is reusable, even if it is used by only one subsystem. If you prefer that
subsystem code be inlined in such circumstances rather than deployed as
functions, you should choose Auto for the RTW system code option.

1-10

Limitations

The presence of certain blocks in a subsystem can also prevent its code from
being reused. These are

• Scope blocks (with data logging enabled)

• S-Function blocks that fail to meet certain criteria

• To File blocks

• To Workspace blocks

Model Referencing Limitations
This section summarizes major limitations on the use of model referencing
with some features of Real-Time Workshop and products based on Real-Time
Workshop. For example, models must meet certain conditions to reference
other models or be referenced by other models. See “Model Referencing
Limitations” in the Simulink Release Notes for a more complete list of model
reference limitations.

The following limitations are specific to code generation:

• When using the model reference feature, you cannot generate C code for the
top model and C++ code for referenced models. However, you can generate
C or C++ for both the top and referenced models or C++ code for the top
model and C code for referenced models.

• When using the data logging feature, note that

- To Workspace and Scope blocks in models referenced by a top model do
not log data when you run code generated from the top model.

- A top model can perform data logging to MAT-files whether or not it
refers to other models. However, code generated for referenced models
does not log data to MAT-files regardless of the target specified. If data
logging is enable for a referenced model, Real-Time Workshop disables
the option during code generation and reenables it after the build is
complete.

• The S-function target and GRT malloc target do not support model
referencing.

1-11

1 Real-Time Workshop 6.3 Release Notes

• You cannot build a subsystem module by right-clicking a subsystem if the
subsystem contains Model blocks unless the model is configured to use
an ERT target.

• Real-Time Workshop cannot generate stand-alone executables for models
that refer to models that include noninlined S-functions.

• A referenced model cannot use noninlined S-functions generated by
Real-Time Workshop.

• Configuration parameters of a top model and its reference models must
meet specific conditions. For details, see “Possible Incompatibilities
Between Top and Referenced Models” in the Real-Time Workshop
documentation.

• You must clear the Load initial state option on the Data Import/Export
pane of the Configuration Parameters dialog box when building a target for
a referenced model. However, you can select this option for the top model.

• If you generate code for a model’s atomic subsystems as reusable functions,
the functions can have inputs or outputs connected to a referenced model’s
root Inport or Outport blocks, however, they can affect code reuse. For
details, see “Reusable Code and Referenced Models” in the Real-Time
Workshop documentation.

• If you have developed a custom target and you want it to be compatible
with model referencing, you must implement a SelectCallback function to
declare model reference compatibility. See “Supporting Model Referencing”
in the Real-Time Workshop Embedded Coder documentation.

External Mode Limitations
In general, you cannot change a parameter if doing so results in a change in
the structure of the model. For example, you cannot change

• The number of states, inputs, or outputs of any block

• The sample time or the number of sample times

• The integration algorithm for continuous systems

• The name of the model or of any block

• The parameters to the Fcn block

1-12

Limitations

If you cause any of these changes to the block diagram, then you must rebuild
the program with newly generated code.

However, you can change parameters in transfer function and state space
representation blocks in specific ways:

• The parameters (numerator and denominator polynomials) for the Transfer
Fcn (continuous and discrete) and Discrete Filter blocks can be changed (as
long as the number of states does not change).

• Zero entries in the State-Space and Zero Pole (both continuous and discrete)
blocks in the user-specified or computed parameters (that is, the A, B,
C, and D matrices obtained by a zero-pole to state-space transformation)
cannot be changed once external simulation is started.

• In the State-Space block, if you specify the matrices in the controllable
canonical realization, then all changes to the A, B, C, D matrices that
preserve this realization and the dimensions of the matrices are allowed.

Note Opening a dialog box for a source block causes Simulink to pause.
While Simulink is paused, you can edit the parameter values. You must
close the dialog box to have the changes take effect and allow Simulink
to continue.

If the Simulink block diagram does not match the external program, Simulink
displays an error informing you that the checksums do not match (that is, the
model has changed since you generated code). This means that you must
rebuild the program from the new block diagram (or reload the correct one)
to use external mode.

If the external program is not running, Simulink displays an error informing
you that it cannot connect to the external program.

1-13

1 Real-Time Workshop 6.3 Release Notes

Noninlined S-Function Parameter Type Limitations
Parameters to S-functions can be of the following types only:

• Double precision

• Characters in scalars, vectors, or 2-D matrices

For more flexibility in the type of parameters you can supply to S-functions or
the operations in the S-function, inline your S-function and consider using an
mdlRTW S-function routine.

S-Function Target Limitations

• “Goto and From Block Limitations” on page 1-14

• “Model Reference and Updating Limitations” on page 1-16

• “Unsupported Blocks” on page 1-16

Goto and From Block Limitations
When using the S-function target, Real-Time Workshop restricts I/O to
correspond to the root model’s Inport and Outport blocks (or the Inport and
Outport blocks of the Subsystem block from which the S-function target was
generated). No code is generated for Goto or From blocks.

To work around this restriction, you should create your model and subsystem
with the required Inport and Outport blocks, instead of using Goto and From
blocks to pass data between the root model and subsystem. In the model
that incorporates the generated S-function, you would then add needed Goto
and From blocks.

As an example of this restriction, consider the model shown below, and its
subsystem, Subsystem1, shown in the subsequent figure. The Goto block in
Subsystem1, which has global visibility, passes its input to the From block
in the root model.

1-14

Limitations

Root Model with From Block

Subsystem1 with Goto Block

If SubSystem1 is built as an S-Function using the S-Function target, and
plugged into the original model (as shown in the following figure), a warning
is issued when the model is run because the generated S-function does not
implement the Goto block.

Generated S-Function Replaces Subsystem1

A workaround is shown in the next figure. A conventional Outport block is
used in Subsystem1. When the generated S-function is plugged into the root
model, its output is connected to the To Workspace block.

1-15

1 Real-Time Workshop 6.3 Release Notes

Use of Outport in Generated S-Function

Model Reference and Updating Limitations
The following limitations apply to building and regenerating S-function
targets:

• You cannot build models that contain Model blocks using the Real-Time
Workshop S-function target. This also means that you cannot build a
subsystem module by right-clicking (or by using Tools > Real-Time
Workshop > Build subsystem) if the subsystem contains Model blocks.
This restriction applies only to GRT S-functions, not to ERT S-functions.

• If you modify the model that generated an S-Function block, Real-Time
Workshop does not automatically rebuild models containing the generated
S-Function block. This is in contrast to the practice of automatically
rebuilding models referenced by Model blocks when they are modified
(depending on the Model Reference Rebuild options configuration
setting).

• Handwritten S-functions without corresponding TLC files must contain
exception-free code. For more information on exception-free code, see
“Exception Free Code” in the Writing S-Functions Simulink documentation.

Unsupported Blocks
The S-function format does not support the following built-in blocks:

• MATLAB Fcn block

• S-Function blocks containing any of the following:

1-16

Limitations

- M-file S-functions (unless you supply a TLC file for C code generation)

- Fortran S-functions (unless you supply a TLC file for C code generation)

- C/C++ MEX S-functions that call into MATLAB

• Scope block

• To Workspace block

Rapid Simulation Target Limitations
The rapid simulation (RSim) target is subject to the following limitations:

• The RSim target does not support algebraic loops.

• The RSim target does not support MATLAB function blocks.

• The RSim target does not support noninlined M-file, Fortran, or Ada
S-functions.

• If an RSim build includes referenced models (by using Model blocks), these
models must be set up to use fixed-step solvers for code to be generated for
them. The top model, however, can use a variable-step solver as long as
all blocks in the referenced models are discrete.

• In certain cases, changing block parameters can result in structural
changes to your model that change the model checksum. An example
of such a change would be changing the number of delays in a DSP
simulation. In such cases, you must regenerate the code for the model.

• Variable-step solver support for RSim is not available on Windows
platforms when you use the following compilers:

- Watcom C/C++ compiler

- Borland C/C++ compiler

C-API Limitations
The C-API feature has the following limitations.

• The following code formats are not supported:

- S-function

- Simulink Accelerator

1-17

1 Real-Time Workshop 6.3 Release Notes

• For ERT-based targets, the C-API requires that support for floating-point
code be enabled.

• The following signals are not supported:

- External inputs

- External outputs

- Local block outputs

• Parameters local to Stateflow are not supported.

• The following custom storage class objects are not supported:

- Objects without the package csc_registration file are not supported.

- BitPackBoolean objects, grouped custom storage classes, and objects
defined by using macro are not supported.

• Customized data placement is disabled when you are using the
C-API. The interface looks for global data declaration in model.h and
model_private.h. Declarations placed in any other file by customized data
placement result in code that does not compile.

Note Custom Storage Class objects take effect in code generation only if
you use the ERT target and clear the Ignore custom storage classes
check box on the Configuration Parameters dialog box.

Simulink Block Limitations
For information on limitations on the use of Simulink blocks for code
generation, see “Simulink Block Support” in the Real-Time Workshop
documentation. A table lists blocks available in Simulink and provides
caveats, limitations, and suggestions regarding their use with Real-Time
Workshop and Real-Time Workshop Embedded Coder.

1-18

Major Bug Fixes

Major Bug Fixes
To view major bug fixes made in Release 14SP3 for Real-Time Workshop, use
the Bug Reports interface on the MathWorks Web site.

Note If you are not already logged in to Access Login, when you link to the
Bug Reports interface (see below), you will be prompted to log in or create an
Access Login account.

After you are logged in, use this Bug Fixes link. You will see the bug report
for Real-Time Workshop. The report is sorted with fixed bugs listed first,
and then open bugs.

If you are viewing these Release Notes in PDF form, refer to the HTML form
of the Release Notes, using either the Help browser or the MathWorks Web
site, and use the link provided.

Bug fixes made before Release 14SP2 are not included in the Bug Reports
interface. For earlier bug fixes, see

• R14SP1 Major Bug Fixes

• R14 Major Bug Fixes

• R13SP1 Major Bug Fixes

• R13+ Major Bug Fixes

• R13 Major Bug Fixes

• R12SP1 Bug Fixes

1-19

http://www.mathworks.com/support/bugreports/?product=RT&release=R14SP3%20

1 Real-Time Workshop 6.3 Release Notes

Upgrading from an Earlier Release
If you are upgrading from an earlier release, you should review the following
notes:

• “Customizations to Built-In Blocks” on page 1-20

• “Use slbuild Instead of rtwgen” on page 1-20

• “CustomStorageClass and StorageClass Properties Initialized Differently”
on page 1-20

• “rem Function No Longer Supports Tunable Arguments” on page 1-21

• “Hardware Configuration for Pre-Version 6 Models” on page 1-21

Customizations to Built-In Blocks
The MathWorks recommends that you not customize built-in blocks provided
as part of the Simulink product even though the capability exists to do so.
Such customizations might not be applied during the code generation process
and can lead to unpredictable results.

Use slbuild Instead of rtwgen
The Target Language Compiler documentation for R14SP2 and earlier
recommends using the rtwgen and tlc commands together to create targets
and generate code. The rtwgen command is not intended for direct use, and
upgrading Real-Time Workshop may cause code that uses the command to
fail. Existing code should change to use slbuild rather than rtwgen, and new
code should use slbuild exclusively. The syntax for slbuild is

slbuild('model'[,'TargetType'])

Use of the tlc command is unaffected by this change.

CustomStorageClass and StorageClass Properties
Initialized Differently
In Release 14, Real-Time Workshop merged functionality of custom storage
classes into the standard Simulink.Parameter and Simulink.Signal
classes. As a result, when you instantiate the Simulink.CustomParameter

1-20

Upgrading from an Earlier Release

and Simulink.CustomSignal classes, the CustomStorageClass and
StorageClass properties do not get initialized the same way they did in
Release 13.

In Release 13, the properties were initialized as

CustomStorageClass = 'BitField' (1st item on the list)
StorageClass = 'Custom'

Starting in Release 14, the properties are initialized as

CustomStorageClass = 'Default' (1st item on the list)
StorageClass = 'Auto' (custom storage class is ignored)

rem Function No Longer Supports Tunable Arguments
As of R14SP3, the rem function no longer supports tunable parameters when
used with Real-Time Workshop. If you use tunable parameters with this
function, Real-Time Workshop inlines the equivalent numeric value into the
generated code in place of the tunable expression.

Hardware Configuration for Pre-Version 6 Models
When you open a preexisting model that has not been saved using the current
version of Simulink, and select Hardware in the Configuration Parameters
dialog box, the following set of controls appears:

1-21

1 Real-Time Workshop 6.3 Release Notes

All but one of the parameters below the Device type menu are grayed out.
This is because these characteristics have been preset for the default target
(32-bit Generic), as well as for several dozen known target processors that
you can select from that menu.

In the event that none of the choices listed in the Device Type drop-down
menu is appropriate for your intended hardware target, you can select Custom,
and then set values for the hardware characteristics. Selecting any other
option disables them. The hardware characteristics that you can specify are

• Number of bits — Text fields that specify the number of bits used to
represent types char, short, int, and long. The values specified should
be consistent with the word sizes as defined in the compiler’s limits.h
header file.

• Byte ordering — Specifies whether the target hardware uses Big Endian
(most significant byte first) or Little Endian (least significant byte first)
byte ordering. If left as Unspecified, Real-Time Workshop generates code
to determine the endianness of the target; this is the least efficient option.

• Shift right on a signed integer as arithmetic shift — ANSI C leaves
the behavior of right shifts on negative integers as implementation
dependent. Use this control to specify how Real-Time Workshop
implements right shifts on signed integers in generated code.

The option is selected by default. If your C or C++ compiler handles right
shifts as arithmetic shifts, this is the preferred setting.

- When the option is selected, Real Time Workshop generates simple
efficient code whenever the Simulink model performs arithmetic shifts
on signed integers.

- When the option is unselected, Real Time Workshop generates fully
portable but less efficient code to implement right arithmetic shifts.

1-22

Known Software and Documentation Problems

Known Software and Documentation Problems
To view important open bugs in Release 14SP3 for Real-Time Workshop, use
the Bug Reports interface on the MathWorks Web site.

Note If you are not already logged in to Access Login, when you link to the
Bug Reports interface (see below), you will be prompted to log in or create an
Access Login account.

After you are logged in, use this Bug Reports link. You will see the bug report
for Real-Time Workshop. The report is sorted with fixed bugs listed first, and
then open bugs. You can select the Status column to list the open bugs first.

If you are viewing these Release Notes in PDF form, refer to the HTML form
of the Release Notes, using either the Help browser or the MathWorks Web
site, and use the link provided.

1-23

http://www.mathworks.com/support/bugreports/?product=RT&release=R14SP3%20

1 Real-Time Workshop 6.3 Release Notes

1-24

2

Real-Time Workshop 6.2.1
Release Notes

2 Real-Time Workshop 6.2.1 Release Notes

Major Bug Fixes
To view major bug fixes made in Release 14SP2+ for Real-Time Workshop, use
the Bug Reports interface on the MathWorks Web site.

Note If you are not already logged into Access Login, when you link to the
Bug Reports interface (see below), you will be prompted to log in or create an
Access Login account.

After you are logged in, use this Bug Fixes link. You will see the bug report
for Real-Time Workshop. The report is sorted with fixed bugs listed first,
and then open bugs.

If you are viewing these Release Notes in PDF form, refer to the HTML form
of the Release Notes, using either the Help browser or the MathWorks Web
site, and use the link provided.

Bug fixes made before Release 14SP2+ are not included in the Bug Reports
interface. For earlier bug fixes, see

• R14SP1 Major Bug Fixes

• R14 Major Bug Fixes

• R13SP1 Major Bug Fixes

• R13+ Major Bug Fixes

• R13 Major Bug Fixes

• R12SP1 Bug Fixes

2-2

http://www.mathworks.com/support/bugreports/?product=RT&release=R14SP2%2B%20

3

Real-Time Workshop 6.2
Release Notes

3 Real-Time Workshop 6.2 Release Notes

New Features and Enhancements
Real-Time Workshop Version 6.2 introduces the following new features and
enhancements.

• “Model Advisor Enhancements” on page 3-2

• “Rate Transition Block Enhancements” on page 3-3

• “Data Store Read Block Enhancement” on page 3-4

• “C++ Target Language Support” on page 3-5

• “Support for Open Watcom 1.3 Compiler” on page 3-9

• “New Configuration Option for Optimizing Floating-Point to Integer Data
Type Conversions” on page 3-9

• “Task Priority Block Parameters Renamed for Consistency” on page 3-11

• “New RSim Target Configuration Option” on page 3-11

• “LibManageAsyncCounter Function Added to asynclib.tlc Library” on page
3-12

• “Enhanced Documentation on Integrating Legacy and Custom Code with
Generated Code” on page 3-12

• “Documentation Improvements” on page 3-12

Model Advisor Enhancements
The Model Advisor analyzes Simulink models for optimal use of Simulink for
simulation and code generation. You can customize the analysis and resulting
report by selecting the checks that you want the Model Advisor to perform.
Real-Time Workshop 6.2 enhances the Model Advisor by adding several new
checks and grouping checks based on their application for simulation or code
generation.

3-2

New Features and Enhancements

The Model Advisor dialog box now appears as follows:

Rate Transition Block Enhancements
The Rate Transition block has been enhanced to support:

• Automatic insertion for transitions to or from asynchronous tasks. If you
select the Automatically handle data transfers between tasks on the

3-3

3 Real-Time Workshop 6.2 Release Notes

Solvers pane of the Configuration Parameters dialog, Simulink detects
rate transitions and inserts Rate Transition blocks automatically to handle
them for asynchronous and periodic tasks. Prior to Version 6.2, automatic
block insertion for asynchronous tasks was not supported. For details,
see “Rate Transition Block Options”.

• Automatic insertion for single-tasking execution mode. If you select the
Automatically handle data transfers between tasks, Simulink detects
rate transitions inserts Rate Transition blocks automatically for models
that execute in single-tasking or multitasking mode. Prior to Version
6.2, automatic block insertion for single-tasking execution mode was not
supported. For details, see “Rate Transitions and Asynchronous Blocks”.

• Asynchronous rates when no priority is specified. You can set the block to
one of two modes—unprotected or data integrity with no determinism.
Prior to Version 6.2, the Rate Transition block did not ensure data integrity
for asynchronous rates when the priority was not set. For details, see “Rate
Transitions and Asynchronous Blocks”.

Data Store Read Block Enhancement
The code that Real-Time Workshop generates for the Data Store Read block
has been optimized. Prior to this release, the code generated for this block
would copy the value of the block to a temporary variable. This release of
Real-Time Workshop eliminates the use of the temporary variable, if possible.

Consider the following model:

A section of the code generated for this model, using an earlier version of
Real-Time Workshop would appear as follows:

/* local block i/o variables */

real_T rtb_DataStoreRead;

/* DataStoreWrite: '/Data Store Write' incorporates:

3-4

New Features and Enhancements

* Inport: '/In1'
*/

mdsm_opt_DWork.A = mdsm_opt_U.In1;

/* DataStoreRead: '/Data Store Read' */
rtb_DataStoreRead = mdsm_opt_DWork.A;

/* Outport: '/Out1' */
mdsm_opt_Y.Out1 = rtb_DataStoreRead;

Note the value of mdsm_opt_DWork.A is stored in the temporary variable
rtb_DataStoreRead.

The following code fragment shows the comparable section of code
generated by this release of Real-Time Workshop. The temporary variable
rtb_DataStoreRead is no longer used.

/* DataStoreWrite: '/Data Store Write' incorporates:
* Inport: '/In1'
*/

mdsm_opt_DWork.A = mdsm_opt_U.In1;

/* Outport: '/Out1' incorporates:
* DataStoreRead: '/Data Store Read'
*/

mdsm_opt_Y.Out1 = mdsm_opt_DWork.A;

C++ Target Language Support
Real-Time Workshop 6.2 introduces support for generating C++ code. The
primary use for this feature is to facilitate integration of generated code with
legacy or custom user code written in C++.

The following sections discuss

• “Configuring Your Compiler” on page 3-6

• “Selecting Target Language in Configuration Parameter Dialog” on page 3-6

• “Integrating C and C++ Code” on page 3-7

• “C++ Target Language Limitations” on page 3-8

3-5

3 Real-Time Workshop 6.2 Release Notes

For a demo, enter sfcndemo_cppcount in the MATLAB Command Window.
For a Stateflow example, enter sf_cpp.

Configuring Your Compiler
Before you use the new C++ target language support, you might need to
configure Real-Time Workshop to use the appropriate compiler. For example,
on Windows the default compiler is the lcc C compiler shipped with MATLAB.
If you do not configure Real-Time Workshop to use a C++ compiler before you
select the C++ language option, the following build error message appears:

The specified Real-Time Workshop target is configured to generate
C++, but the C-only compiler, LCC, is the default compiler. To
specify a C++ compiler, enter 'mex -setup' at the command prompt.
To generate C code, click (Open) to open the Configuration
Parameters dialog and set the target language to C.

To configure the compiler, use the mex -setup function. Alternatively, you
can modify your target’s template make file (TMF) to include an environment
variable provided by the compiler vendor that specifies the correct compiler.

See “Choosing and Configuring a Compiler” in the Real-Time Workshop
documentation for more information.

Selecting Target Language in Configuration Parameter Dialog
To select the target language for the code Real-Time Workshop generates,

1 Open the Configuration Parameters dialog in the Model Explorer or
from the Simulation menu.

2 Open the general Real-Time Workshop pane.

3 In the Target selection section, select C or C++ from the Language menu.

3-6

New Features and Enhancements

Real-Time Workshop generates .c or .cpp files, depending on your selection,
and places the files in your build directory.

Integrating C and C++ Code
Real-Time Workshop includes a variety of mechanisms for integrating
generated code with legacy or custom code. A summary of these mechanism is
available in “Integrating Legacy and Custom Code”.

If you need to integrate legacy or custom C code with generated C++ code
or vice versa, you must modify your legacy or custom code to be language
compatible with the generated code. Options for making the code language
compatible include

• Writing or rewriting the legacy or custom code in the same language as
the generated code.

• If the generated code is in C++ and your legacy or custom code is in C, for
each C function, create a header file that prototypes the function, using
the following format:

#ifdef __cplusplus
extern "C" {
#endif
int my_c_function_wrapper();
#ifdef __cplusplus
}
#endif

3-7

3 Real-Time Workshop 6.2 Release Notes

The prototype serves as a function wrapper. The value __cplusplus is
defined if your compiler supports C++ code. The linkage specification
extern "C" specifies C linkage with no name mangling.

• If the generated code is in C and your legacy or custom code is in C++,
include an extern "C" linkage specification in each .cpp file. For example,
the following shows the a portion of the C++ code in the file my_func.cpp:

extern "C" {

int my_cpp_function();
{ .

.

.}
}

C++ Target Language Limitations

• Microsoft Visual C/C++ and GNU C/C++ have been fully tested and are
fully supported on 32–bit Windows and Linux platforms. However, Version
6.2 provides Beta C++ support only for the Watcom, Borland®, and Intel®

C/C++ compilers. These compilers have not yet been fully evaluated for
compatibility with MathWorks products.

• Real-Time Workshop provides Beta support for C++ code generation for
all blockset products. C++ code generation for the blockset products has
not yet been fully evaluated.

• Real-Time Workshop does not support C++ code generation for the
following:

Embedded Target for Infineon C166® Microcontrollers
Embedded Target for Motorola® MPC555
Embedded Target for Motorola® HC12
Embedded Target for OSEK/VDX®

Embedded Target for TI C2000™ DSP
Embedded Target for TI C6000™ DSP
Real-Time Windows Target
SimDriveline
SimMechanics
SimPowerSystems

3-8

New Features and Enhancements

xPC Target

• Real-Time Workshop does not support the use of external mode with
executables it generates from C++ source files.

• When using the Model Reference feature, you cannot generate C code for
the parent model and C++ code for models that refer to the parent model.
However, you can generate C or C++ for both the parent and referring
models, or C++ code for the parent model and C code for referring models.

• The following Real-Time Workshop Embedded Coder dialog box fields
currently do not accept the .cpp extension. However, a .cpp file will be
generated if you specify a filename without an extension in these fields,
with C++ selected as the target language for your generated code.

- Data definition filename field on the Data Placement pane of the
Configuration Parameters dialog box

- Definition file field for an mpt data object in the Model Explorer

These restrictions on specifying .cpp will be removed in a future release.

Support for Open Watcom 1.3 Compiler
Real-Time Workshop 6.2 provides Beta support for the Open Watcom 1.3
compiler. The compiler has not yet been fully evaluated for compatibility
with MathWorks products. However, the support files necessary for you to
use the compiler with MATLAB and the MATLAB Compiler are available. To
configure the compiler, use the mex -setup function. Full support will be
available in a future release.

New Configuration Option for Optimizing
Floating-Point to Integer Data Type Conversions
A new option has been added to the Optimization pane of the Configuration
Parameters dialog box that you can use to increase the efficiency of generated
code that represents floating-point to integer or fixed-point data type
conversions. The option removes code that ensures that execution of the
generated code produces the same results as simulation when out-of-range
conversions occur. This reduces the size and increases the speed of the
generated code at the cost of potentially producing results that do not match
simulation in the case of out-of-range values.

3-9

3 Real-Time Workshop 6.2 Release Notes

Note Enabling this option affects code generation results only for
out-of-range values and hence cannot cause code generation results to differ
from simulation results for in-range values.

The new option, Remove code from floating-point to integer
conversions that wraps out-of-range values, appears in the Integer and
fixed-point section of the dialog box pane, as shown below.

Consider using this option if code efficiency is critical to your application and
the following conditions are true for at least one block in the model.

• Computing the block’s outputs or parameters involves converting
floating-point data to integer or fixed-point data

• The block’s Saturate on integer overflow option is disabled

3-10

New Features and Enhancements

Task Priority Block Parameters Renamed for
Consistency
The Effective priorities parameter for the Async Interrupt block and Task
priority parameter for the Task Sync block are renamed Simulink task
priority. In both cases, the Rate Transition block uses the parameter to
generate the appropriate high-to-low or low-to-high priority transition code.

New RSim Target Configuration Option
A new option, Force storage classes to AUTO, has been added to the
Real-Time Workshop/RSim Target pane of the Configuration Parameters
dialog box. The option is on by default and forces all storage classes to
Auto. If your application requires the use of other storage classes, such a
ExportedGlobal or ImportedExtern, turn this option off. The new option
appears in the Storage Classes section as shown below.

3-11

3 Real-Time Workshop 6.2 Release Notes

LibManageAsyncCounter Function Added to
asynclib.tlc Library
The function LibManageAsyncCounter has been added to the asynclib.tlc
TLC library. This function determines whether an asynchronous task needs a
counter and manages its own timer.

Enhanced Documentation on Integrating Legacy and
Custom Code with Generated Code
Documentation on integrating legacy and custom code with generated code
has been enhanced.

• A new section, “Integrating Legacy and Custom Code”, summarizes
the mechanisms available for integrating code generated by Real-Time
Workshop into an existing code base or integrating existing code into code
generated by Real-Time Workshop. In the later scenario, integration can be
either block based or model based. The new summary can help you evaluate
and choose a mechanism that best meets your application requirements and
directs you to other areas of the documentation for implementation details.

• The section “Using the rtwmakecfg.m API” discusses new fields in the
rtwmakecfg.m API that support the Real-Time Workshop build process
for S-functions.

• A new section, “Build Support for S-Functions”, discusses the different
ways of adding build information to the Real-Time Workshop build process.

Documentation Improvements
The following areas of the Real-Time Workshop documentation have been
corrected or improved:

• Integrating custom and legacy code

• References to and screen captures showing new and modified Configuration
Parameter dialog box options

• Descriptions of MaxStackSize and MaxStackVariableSize variables

• Limitations on tunable expressions

• Limitation on Stateflow outputs (removed)

3-12

New Features and Enhancements

• Symbolic naming conventions for signals in generated code as documented
in “Working with Data Structures”

• Parameter tuning using MATLAB commands

• How to avoid parameter configuration conflicts related to storage classes

• Example for user-defined block state names

• Parameter configuration quick reference diagram (was missing from HTML
output)

• Data type considerations for tunable workspace parameters

• Definitions of top model and reference model in the context of model
referencing

• Deletion of user *.c files from the Real-Time Workshop build directory

• Conditions that need to be met for a block to be considered for dead code
elimination

• Writing S-functions that specify sample time inheritance

• Use of ssSetNeedAbsoluteTime or ssSetNeedElapseTime in S-functions
for accessing timers

• Optimizing with expression folding

• References to the Data Object Wizard (DOW) in the context of using ASAP2

• C API for S-Functions

• External mode parameter descriptions

3-13

3 Real-Time Workshop 6.2 Release Notes

Major Bug Fixes
To view major bug fixes made in Release 14SP2 for Real-Time Workshop, use
the Bug Reports interface on the MathWorks Web site.

Note If you are not already logged into Access Login, when you link to the
Bug Reports interface (see below), you will be prompted to log in or create an
Access Login account.

After you are logged in, use this Bug Fixes link. You will see the bug report
for Real-Time Workshop. The report is sorted with fixed bugs listed first,
and then open bugs.

If you are viewing these Release Notes in PDF form, refer to the HTML form
of the Release Notes, using either the Help browser or the MathWorks Web
site, and use the link provided.

Bug fixes made before Release 14SP2 are not included in the Bug Reports
interface. For earlier bug fixes, see

• R14SP1 Major Bug Fixes

• R14 Major Bug Fixes

• R13SP1 Major Bug Fixes

• R13+ Major Bug Fixes

• R13 Major Bug Fixes

• R12SP1 Bug Fixes

3-14

http://www.mathworks.com/support/bugreports/?product=RT&release=R14SP2

4

Real-Time Workshop 6.1
Release Notes

4 Real-Time Workshop 6.1 Release Notes

Changes from the Previous Release
The behavior of source block dialog has changed. Note that opening a dialog
for a source block causes Simulink® to pause. While Simulink is paused, you
can edit the parameter values. You must close the dialog to have the changes
take effect and allow Simulink to continue.

Major Bug Fixes
Real-Time Workshop 6.1 includes several bug fixes made since Version 6.0.
You can see a list of the important Version 6.1 bug fixes.

If you are viewing these Release Notes in PDF form, refer to the HTML form
of the Release Notes, using either the Help browser or the MathWorks Web
site, and use the link provided.

If you are upgrading from a version earlier than Version 6.1, you should also
review major bug fixes for all versions between the version currently installed
and Version 6.1.

4-2

5

Real-Time Workshop 6.0
Release Notes

5 Real-Time Workshop 6.0 Release Notes

New Features
This section introduces the new features and enhancements added in the
Real-Time Workshop 6.0 since Real-Time Workshop 5.0.1. The new features
are organized into the following categories:

• “User Interface and Configuration Enhancements” on page 5-2

• “Model Referencing (Model Block) Enhancements” on page 5-9

• “Signal, Parameter Handling and Interfacing Enhancements” on page 5-10

• “External Mode Enhancements” on page 5-18

• “Code Customization Enhancements” on page 5-23

• “Timing-Related Enhancements” on page 5-29

• “GRT and ERT Target Unification” on page 5-34

User Interface and Configuration Enhancements

• “New Model Explorer and Configuration Parameters Dialogs for Controlling
Code Generation” on page 5-2

• “Generated Code Report Integrated into Model Explorer” on page 5-5

• “Model Advisor Helps You to Configure and Optimize Any Target” on page
5-7

• “Real-Time Workshop Now Supports Intel Compiler” on page 5-8

New Model Explorer and Configuration Parameters Dialogs
for Controlling Code Generation
This release of Simulink features a new user interface for simulation and
code generation, called Model Explorer, which replaces the Simulation
Parameters dialog. When you select Model Explorer from the Tools
menu, the Model Explorer opens in a new window containing three panes,
as shown below:

5-2

New Features

The Model Explorer features three resizable, scrolling panes:

• Model Hierarchy pane

• Contents pane

• Dialog pane

For more information on the Model Explorer, see the Simulink documentation.

You can also control configurations with the standalone Configuration
Parameters dialog. To activate this interface, a model must be open. You can
summon this interface in any of three equivalent ways:

• Choose Configuration Parameters from the Simulation menu.

• Choose Real-Time Workshop -> Options from the Tools menu.

• Type Ctrl+E.

The Configuration Parameters dialog with the Optimization pane
selected is shown below:

5-3

5 Real-Time Workshop 6.0 Release Notes

Code Generation Configuration Components. Code generation aspects
of configuration sets fall under the following configuration components and
sections within them:

• The Data Import/Export Configuration Component

• The Optimization Configuration Component

• The Diagnostics Configuration Component

• The Hardware Configuration Component

• Real-Time Workshop

- Real-Time Workshop/General Tab

- Real-Time Workshop/Debug Tab

- Real-Time Workshop/Comments Tab

- Real-Time Workshop/Interface Tab (specific to the current Real-Time
Workshop target)

• The Model Referencing Configuration Component

5-4

New Features

Note The controls visible in configuration component panes can change
according to the target you are using and the options you select. This
means that the interfaces shown below may not be identical to those that
you see in a given context.

For information on configuration parameter options relevant to code
generation, see “Adjusting Simulation Configuration Parameters for Code
Generation”.

Generated Code Report Integrated into Model Explorer
You can now browse files generated by Real-Time Workshop, Real-Time
Workshop Embedded Coder, and other products directly in the Model
Explorer. This capability supplements HTML code generation reporting,
which was available in earlier releases.

When you generate code, or open a model that has generated code for its
current target configuration in your working directory, The Hierarchy (left)
Pane of Model Explorer contains a node named Code for model. Under that
node are other nodes, typically called Top Model and Shared Code. Clicking
on Top Model displays in the Content (middle) Pane a list of source code
files in the build directory of each model that is currently open. The figure
below shows code for the vdp model.

5-5

5 Real-Time Workshop 6.0 Release Notes

In this example, the file ./vdp_grt_rtw/vdp.c is being viewed. To view any
file in the Content Pane, click it once.

The views in the Dialog (right) Pane are read-only. The code listings there
contain hyperlinks to functions and macros in the generated code. A hyperlink
for the file being viewed sits above it. Clicking it opens that file in a text
editing window where you can modify its contents. This is not something you
typically do with generated source code, but in the event you have placed
custom code files in the build directory, you can edit them as well in this
fashion.

5-6

New Features

If an open model contains Model blocks, and if generated code for any of these
models exists in the current slprj directory, nodes for the referenced models
appear in the Hierarchy pane one level below the node for the top model.
Such referenced models do not need to be open for you to browse and read
their generated source files.

The node directly underneath the Top Model node is named Shared Code. It
collects files in the appropriate ./slprj/target/_sharedutils subdirectory,
containing shared fixed-point utility code, if any exists.

The structure and contents of slprj directories are described in "“Project
Directory Structure for Model Reference Targets” in the Real-Time Workshop
documentation.

Model Advisor Helps You to Configure and Optimize Any
Target
The Model Advisor (formerly called Model Assistant) is a tool that helps you
configure any model to optimally achieve your code generation objectives.
Using it, you can quickly configure a model for code generation, and
identify aspects of your model that impede production deployment or limit
code efficiency. Clicking the icon labeled Advice on model in the Model
Hierarchy pane launches the Model Advisor From Model Explorer. This
node is directly below the Code for model node, as the above figure shows.
Clicking the Advice node causes the Dialog pane to be labeled Model
Advisor, and to contain a link, Start model advisor. When you click that
link, Model Advisor opens a separate HTML window with a set of button
and check box controls.

Another way to invoke Model Advisor is to type

ModelAdvisor('model')

specifying the name of model, at the MATLAB® prompt. If the model (assumed
to be on the MATLAB path) is not currently open, Model Advisor will open it.

5-7

5 Real-Time Workshop 6.0 Release Notes

The following figure illustrates a Model Advisor report:

See “Using the Model Advisor” in the Real-Time Workshop documentation
for more information.

Real-Time Workshop Now Supports Intel Compiler
Real Time Workshop now includes support for the Intel compiler (version
7.1 for Microsoft Windows). Note that the Intel compiler requires Microsoft
Visual C/C++ version 6.0 or newer to be installed.

5-8

New Features

Model Referencing (Model Block) Enhancements

• “Including Models as Blocks in Simulations and in Generated Code” on
page 5-9

• “Model Reference Demos” on page 5-10

Including Models as Blocks in Simulations and in Generated
Code
The new Model block from the Simulink library allows one model to include
another model as if it were a block. This feature, called model reference, works
by generating code for included models that the parent model executes from
a binary library file. In this release, Model reference works on all Unix and
Linux platforms (using the gcc compiler), and on Windows PC platforms
(using the lcc and Visual C++ compilers).

We call models that include Model blocks top models. Model referencing uses
incremental loading; when a top model is opened, any models it references
will not be loaded into memory until they are needed or the user opens them.

Note In order to take advantage of incremental model loading, models called
from Model blocks must be saved at least once with the current version
of Simulink (Release 14). Top and referenced models must have Inline
parameters set on.

When running simulations, models are included in other models by generating
code for them in a project directory and creating a static library file called a
simulation target (sometimes referred to as a SIM target). When Real-Time
Workshop generates code for referenced models, it follows a parallel process to
create whatever target (e.g., GRT) you have specified (sometimes generically
referred to as Real-Time Workshop targets). The generated code is also stored
in the project directory, although generated code for parent models is stored
(as in previous releases) in a build directory at the same level as the model
reference project directory.

In addition to incremental loading, the model referencing mechanism employs
incremental code generation. This is accomplished by comparing the date,

5-9

5 Real-Time Workshop 6.0 Release Notes

and optionally, the structure of model files of referenced models with those
for their generated code to determine whether it is necessary to regenerate
model reference targets. You can also force or prevent code generation via
the diagnostic setting for Rebuild options in the Model Referencing
Configuration Parameters dialog.

Model Reference Demos
You can learn more about how model blocks work and generate code by
running demos. For the full demo suite, at the MATLAB prompt type

mdlrefdemos

The suite contains three separate demos:

• mdlref_basic — General demonstration of using Model blocks

• mdlref_paramargs — Passing parameters to referenced models

• mdlref_bus — Using bus objects to communicate signals to referenced
models

• mdlref_conversion — Automatically converting atomic subsystems in
models to models called with Model blocks.

For more information on generating code for referenced models, including
using mdlref_conversion, see “Generating Code from Models Containing
Model Blocks” and “Generating Code for a Referenced Model” in the Real-Time
Workshop documentation.

Signal, Parameter Handling and Interfacing
Enhancements

• “New C-API for Accessing Model Block Outputs and Parameters Data”
on page 5-11

• “Back-propagating Auto, Test-pointed Signal Labels Through Subsystem
Output Ports” on page 5-15

• “Declaring Wide Signals, States, and Parameters as
ImportedExternPointer” on page 5-15

• “Bus Creator Blocks Now Can Emit Structures” on page 5-16

5-10

New Features

• “Minimizing Memory Requirements for Parameters and Data During Code
Generation” on page 5-17

• “New Options for Controlling Resolution of Signal Objects for Named
Signals and States” on page 5-18

New C-API for Accessing Model Block Outputs and Parameters
Data
C-API is a target-based Real-Time Workshop feature that provides access to
global block outputs and global parameters in the generated code. Using
C-API, you can build target applications that log signals, monitor signals and
tune parameters while the generated code executes.

In previous releases, to access model parameters via the C-API, a
model-specific parameter mapping file, model_pt.c was generated. Similarly,
to access the BlockSignals, model_bio.c is generated. The new C-API
improves the efficiency and capability of the interface while reducing its code
size. In addition, the new API will provide support for:

• Referenced models

• Fixed point

• Complex data

• Reusable code

The new interface eliminates redundant fields and also improves consistency
between signal and parameter structures. For example, previously the data
name was char_T* for signals but was uint_T for parameters.

The C-API is designed to provide a smaller memory footprint. This is achieved
by mapping information common to signals and parameters in smaller
structures. An index into the structure map is provided in the actual signal
or parameter structure. This allows the sharing of data across signals and
parameters.

When you select the C-API feature and generate code, Real-Time Workshop
generates two additional files, model_capi.c and model_capi.h, where
"model" is the name of the model. Real-Time Workshop places the two
C-API files in the build directory, based on settings on the Configuration

5-11

5 Real-Time Workshop 6.0 Release Notes

Parameters dialog. The model_capi.c file contains information about global
block signals and global parameters defined in the generated code. The
model_capi.h file is an interface header file between the model source code
and the generated C-API. You can use the information in these C-API files to
create your application. The generated files are illustrated below.

Compatibility Considerations. The old C API will continue to be available,
but at some point will be eliminated. The following table compares the files in
the two versions:

CAPI Files New C-API Files Old C-API Files

Data structure
interface

Unified interface for
signals and parameters:
/rtw/c/src/rtw_capi.h

Signals Interface:
/rtw/c/src/bio_sig.h
Parameters Interface:
/rtw/c/src/pt_info.h

RTModel C API
Interface

/rtw/c/src/
rtw_modelmap.h

/rtw/c/src/mdl_info.h

TLC files /rtw/c/tlc/mw/
capi.tlc

/rtw/c/tlc/mw/biosig.tlc
/rtw/c/tlc/mw/ptinfo.tlc

The file rtw_modelmap.h defines structures for mapping data from the
rtModel structure. The file rtw_capi.h provides macros for accessing the
rtModel.

5-12

New Features

Note Because the data structures used for the different APIs can conflict, you
can generate either C-API or External Mode interface code, but not both at
once. The same holds true for ASAP2 interface code, a third data exchange
option available for ERT and GRT targets.

Generating the C-API Files. There are two ways to select the C-API
feature: Using the Configuration Parameters dialog or directly from the
MATLAB command line.

To select the C-API with the Configuration Parameters dialog

1 In the open model, select Configuration Parameters on the Simulation
menu.

2 Click Interface under Real-Time Workshop on the left pane.

3 Select C-API in the Interface field. The Signals in C API and
Parameters in C API check boxes appear, as shown below.

4 If you want to generate C-API for global block outputs, select the Signals
in C API check box. If you want to generate C-API for global block and
model parameters, select the Parameters in C API check box. If you
select both check boxes, the default, both signals and parameters will
appear in the C-API.

5 Click Apply.

6 Click Real-Time Workshop in the left pane. The Generate code button
appears in the right pane.

7 Click Generate Code.

5-13

5 Real-Time Workshop 6.0 Release Notes

Activating the C-API from the MATLAB Command Line. From the
MATLAB command line you can select or clear the two C-API check boxes on
the Configuration Parameters dialog using the uset_param command.
Type one or more of the following commands on the MATLAB command line
as desired, where modelname is the one-word name of the model:

To select Signals in C API, type

uset_param(modelname,'RTWCAPISignals','on')

To clear Signals in C API, type

uset_param(modelname,'RTWCAPISignals','off')

To select Parameters in C API, type

uset_param(modelname,'RTWCAPIParams','on')

To clear Parameters in C API, type

uset_param(modelname,'RTWCAPIParams','off')

5-14

New Features

Using the C-API in an Application. The C-API provides you with the
flexibility of writing your own application code to interact with the signals
and parameters. Your target-based application code is compiled with the
Real-Time Workshop generated code into an executable. The target-based
application code accesses the C-API structure arrays in the model_capi.c
file. You may have host-based code that interacts with your target-based
application code. Or, you may have other target-based code that interacts
with your target-based application code. The rtw_modelmap.h file provides
macros for accessing the structures in these arrays, and their members.

For more details, see “C-API for Interfacing with Signals and Parameters” in
the Real-Time Workshop documentation.

Back-propagating Auto, Test-pointed Signal Labels Through
Subsystem Output Ports
If a signal exiting an output port of a subsystem has non-auto storage
class, the label on that signal is internally propagated backwards into the
subsystem so that the code generated for the subsystem uses that signal label
which is defined outside the subsystem. Before this release, signal labels
were not back-propagated when the signal’s storage class was auto and it
also was test-pointed. Signal labels are now also back-propagated the if the
signal is test-pointed.

Declaring Wide Signals, States, and Parameters as
ImportedExternPointer
If your model declares the storage class of a signal, state, or parameter
as ImportedExternPointer, your code must define an appropriate pointer
variable. In Version 6, whenever the signal state, or parameter is wide, the
variable must be defined as a pointer to an array. In previous versions, an
array of pointers was assumed. Here are the changes:

Width Previous Versions Version 6

scalar double *x1 double *x1

wide double *x2[] double *x2

5-15

5 Real-Time Workshop 6.0 Release Notes

The legacy code could define and initialize data as follows:

double x1_data;
double *x1 = &x1_data;
double x2_data[10];
double *x2 = x2_data;

This change enables wide data declared as ImportedExternPointer to occupy
contiguous memory locations, making this storage class useful in more
contexts than previously possible.

Bus Creator Blocks Now Can Emit Structures
In the past, the output of a Bus Creator block could not be assigned a storage
class. If its new parameter Output as structure is selected, the output of the
block can be assigned a storage class. This will enable bus signals to occupy
contiguous memory. When this parameter is selected, a Simulink Bus object
must be specified. You can make and modify bus objects (class Simulink.Bus)
using the Bus Editor. Type buseditor at the MATLAB prompt. An example
Bus Creator dialog for a block that outputs a three-element structure is
shown below.

5-16

New Features

For additional details on working with bus and other Simulink data objects,
see the “Working with Data” in the Simulink documentation.

Minimizing Memory Requirements for Parameters and Data
During Code Generation
When Real-Time Workshop generates code, it creates an intermediate
representation of your model (called model.rtw), which the Target Language
Compiler parses to transform block computations, parameters, signals, and
constant data into a high-level language, (e.g., C). Parameters and data are
normally copied into the model.rtw file, whether they originate in the model
itself or come from variables or objects in a workspace.

Models which have large amounts of parameter and constant data (such as
lookup tables) can tax memory resources and slow down code generation
because of the need to copy their data to model.rtw. You can improve code
generation performance by limiting the size of data that is copied by using a
set_param command line option, described below.

Data vectors such as those for parameters, lookup tables, and constant blocks
whose sizes exceed a specified value are not copied into the model.rtw file. In
place of the data vectors, Real-Time Workshop places a special reference key
in the intermediate file that enables the Target Language Compiler to access
the data directly from Simulink when it is needed and format it directly into
the generated code. This results in maintaining only one copy of large data
vectors in memory.

You can specify the maximum number of elements that a parameter or other
data source can have for Real-Time Workshop to represent it literally in the
model.rtw file. Whenever this threshold size is exceeded, Real-Time Workshop
writes a reference to the data to the model.rtw file, rather than its values.
To do this, type the following set_param function in the MATLAB Command
Window:

set_param(0, 'RTWDataReferencesMinSize', size)

Provide an integer value for size that specifies the number of data elements
above which reference keys are to be used in place of actual data values. The
default value for size is 10 elements.

5-17

5 Real-Time Workshop 6.0 Release Notes

New Options for Controlling Resolution of Signal Objects for
Named Signals and States
In prior releases, Real-Time Workshop attempted to resolve all signal objects
in a model. Checking all named signals and states was inefficient, complicated
error checking, and now has the potential to cause problems for incremental
code generation for referenced models. To address these concerns, the current
release provides following enhancements:

• Ports and blocks with discrete state now have a setting to indicate whether
or not the port/block requires that a signal label be resolved.

• Models have a parameter to control signal resolution. This option is
located on the Diagnostics/Data Integrity pane of the Configuration
Parameters dialog.

• A utility function, disableautosignalresolution, is provided to assist
users in converting existing models (that depended on implicit signal label
resolution) to the new, more efficient approach.

External Mode Enhancements

• “External Mode Changes May Impact Customized Makefiles and Static
Main files” on page 5-18

• “Floating Scopes Now Work in External Mode” on page 5-19

• “Serial Transport Mechanism for External Mode on Windows” on page 5-19

• “Upgrading Custom Transport Layers for External Mode to Single-Channel
Architecture” on page 5-21

• “New Static Memory Allocation Option for External Mode Code Generation”
on page 5-22

External Mode Changes May Impact Customized Makefiles
and Static Main files
The grt, ert, grt_malloc, rsim, rtwin, and tornado targets support external
mode. For each of these targets, the template makefiles and the system target
files have been changed. In addition, the main() files for each target have also
been modified (although ert may have a dynamic main, which will not be
affected). If you have customized any of these static files or their makefiles,

5-18

New Features

you will need to merge your version with those in the current release if you
intend to support external mode.

The file matlabroot/rtw/ext_mode/common/ext_main.c has also changed
slightly. In function ExtCommMain, the line

ES = (ExternalSim *)plhs

was changed to

ES = (ExternalSim *)plhs[0]

For xPC, the same change was made in function mexFunction in the file
matlabroot/toolbox/rtw/targets/xpc/internal/xpc/src/ext_main.c.

If you created your own custom ext_main.c file, you need to merge this
change to be compatible with the corresponding change to Simulink.

Floating Scopes Now Work in External Mode
It is now possible to utilize Floating Scope blocks in External mode. A new
section in the External Mode panel, Floating scope, contains:

• Enable data uploading check box, which functions as an "arm trigger"
button for floating scopes. When the target is disconnected it controls
whether or not to "arm when connect" the floating scopes. When already
connected it acts as a toggle button to arm/cancel trigger.

• Duration edit field, which specifies the duration for floating scopes. By
default it is set to auto, which picks up the value specified in the signal and
triggering GUI (which by default is 1000).

The behavior of wired Scope blocks is unchanged.

Serial Transport Mechanism for External Mode on Windows
Real-Time Workshop now provides code to implement both the client and
server side using serial as well as TCP/IP protocols. You can use the
socket-based external mode implementation provided by Real-Time Workshop
with the generated code, provided that your target system supports TCP/IP.
Otherwise, use or customize the serial transport layer option provided.

5-19

5 Real-Time Workshop 6.0 Release Notes

This design makes it possible for different targets to use different transport
layers. The GRT, GRT malloc, ERT, RSim, and xPC targets support
host/target communication via TCP/IP and RS232 (serial) and TCP/IP
communication. Note that serial transport is implemented only for Windows
32-bit architectures.

To use serial data communications, you need to first instruct Real-Time
Workshop to generate support code for external mode. Do this by selecting the
Interface pane (which is sometimes labelled to specify the current target) of
the Real-Time Workshop Configuration Parameters dialog. First choose
External mode from the Interface menu in the Data exchange section of
the dialog. Next, in the Host/target interface subsection that then appears,
select serial_win32 for the Transport layer, as illustrated below:

The above picture shows the default serial MEX-file interface,
ext_serial_win32_comm, selected. You can configure Real-Time Workshop to
override this with your own serial interface mechanism. See the Real-Time
Workshop documentation for details.

5-20

New Features

The MEX-file arguments edit field lets you specify parameters to the
external interface MEX-file for communicating with executing targets. For
TCP/IP interfaces, ext_comm allows three optional arguments:

• The network name of your target

• Verbosity level

• A TCP/IP server port number

For serial transport, optional arguments to ext_serial_win32_comm are:

• Verbosity level (0 or 1)

• Serial port ID (e.g., 1 for COM1, etc.) to be used on the host machine

• Baud rate (selected from the set 1200, 2400, 4800, 9600, 14400, 19200,
38400, 57600, 115200, with a default baud rate of 57600).

When you start the target program using a serial connection, you must specify
the port ID to use to connect it to the host. Do this by including the -port
command line option, e.g.,

mytarget.exe -port 2 -w

If the target program is executing on the same machine as the host and
communications is through a loopback serial cable, the target’s port ID must
differ from that of the host (as specified in the MEX-file arguments edit
field).

Upgrading Custom Transport Layers for External Mode to
Single-Channel Architecture
In earlier releases External Mode had separate logical channels for
messages and data. In the TCP/IP example source files, these channels were
implemented as separate sockets. Now there is only one logical channel
(socket), which handles both data and messages (both of which are now called
packets).

Most users will not notice this change. If, however, you have created your
own custom transport layer for External Mode, you will have to modify it

5-21

5 Real-Time Workshop 6.0 Release Notes

for the single-channel architecture. Here is a summary of the changes that
you may need to make:

On the target side (see example files in matlabroot/rtw/c/src/):

• The function ExtWaitForStartMsgFromHost() has been renamed
ExtWaitForStartPktFromHost().

• The functions ExtSetHostData() and ExtSetHostMsg() have been merged
into ExtSetHostPkt().

• The function ExtGetHostMsg() has been renamed ExtGetHostPkt().

On the host side (see example files in matlabroot/rtw/ext_mode):

• The functions ExtTargetDataPending() and ExtTargetMsgPending()
have been merged into ExtTargetPktPending().

• The functions ExtGetTargetData() and ExtGetTargetMsg() have been
merged into ExtGetTargetPkt().

• The function ExtSetTargetMsg() has been renamed ExtSetTargetPkt().

For complete instructions, see “Creating an External Mode Communication
Channel”in the Real-Time Workshop documentation.

New Static Memory Allocation Option for External Mode Code
Generation
Code for external mode can now be generated that uses only static memory
allocation ("malloc-free" code). The Static memory allocation check box,
found on the GRT and ERT Target configuration component, enables this
feature and activates an edit field in which you can specify the size of the
static memory buffer used by external mode. The default value is 1,000,000
bytes. Should you enter too small a value for your application, external mode
will issue an out-of-memory error when it tries to allocate more memory than
you allowed. In such cases, the value in the Static memory buffer size field
should be increased and the code should be regenerated. To determine how
much memory you need to make available, enable verbose mode on the target
(by including OPTS="-DVERBOSE" on the make command line). As it executes,
external mode will display the amount of memory it tries to allocate and the
amount of memory available to it each time it attempts an allocation. Should

5-22

New Features

an allocation fail, this console log can be used to adjust the size entered in the
Static memory buffer size field.

Code Customization Enhancements

• “Source Code for User S-Functions Now Is Easier to Include” on page 5-23

• “Custom Code Block Library Enhancements” on page 5-24

• “Combining User C++ Files with Generated Code” on page 5-24

• “Preventing User Source Code from Being Deleted from Build Directories”
on page 5-24

• “Designating Target-Specific Math Functions” on page 5-25

• “Hook Files Describing Hardware Characteristics Are Deprecated” on page
5-26

Source Code for User S-Functions Now Is Easier to Include
In prior releases, Real-Time Workshop sometimes failed to find S-function
source files during a build, even if they were on the MATLAB path, thus
aborting the build with an error. This happened because there were no rules
dynamically added to the generated makefile for handling the directories in
which the S-function MEX-files were located.

Now, Real-Time Workshop adds an include path to the generated makefiles
whenever it finds a file named s-function-name.h in the same directory that
the S-function MEX-file is in. This directory must be on the MATLAB path.

Similarly, Real-Time Workshop will add a rule for the directory when it finds
a file s-function-name.c (or .cpp) in the same directory as the S-function
MEX-file.

This enhancement removes the need to copy the S-function source file into
the MATLAB current directory or to create an rtwmakecfg.m file in the
S-function’s directory.

5-23

5 Real-Time Workshop 6.0 Release Notes

Custom Code Block Library Enhancements
The Custom Code Block library has been reinstated into the Real-Time
Workshop library. The library has been simplified, so that now the same blocks
can be used in subsystems as in top-level models (with minor exceptions).
Custom Code blocks enable users to incorporate their own code fragments to
specific functions in the source code and header files generated by Real-Time
Workshop. The user code can be included in Real-Time Workshop target code
generated for referenced models (via Model blocks).

Note that custom code that you include in a configuration set is ignored when
building Accelerator, S-Function, and Model Reference Simulation Targets.

Combining User C++ Files with Generated Code
It is now possible to incorporate user C++ files into both Real-Time Workshop
and Stateflow builds. Note that Real-Time Workshop itself does not generate
C++ code; it simply enables them to be called and incorporated into an
executable. For examples of how to use this capability, see the following
demos:

• sf_cpp.mdl — accessible through Stateflow Demos in the Help Browser.

• sfcndemo_cppcount.mdl — (in the sfundemos demo suite, accessible from
Help Browser under Simulink->Features->S-Function examples.)

Preventing User Source Code from Being Deleted from Build
Directories
In Release 13, the behavior of Real-Time Workshop regarding handling of
user source files in the build directory changed. Previously, any .c or .h
files that the user had placed in the build directory were not deleted when
rebuilding targets. Now all foreign source files are by default deleted, but can
be preserved by following the guidelines given below.

If you put a .c or .h source file in a build directory, and you want to prevent
Real-Time Workshop from deleting it during the TLC code generation process,
insert the string target specific file in the first line of the .c or .h file.
For example,

/* COMPANY-NAME target specific file
*

5-24

New Features

* This file is created for use with the
* COMPANY-NAME target.
* It is used for ...
*/
...

Make sure target specific file is spelled correctly, and occupies the first
line of the source file.

In addition, flagging user files in this manner prevents post-processing them
to indent them along with generated source files. Auto-indenting occurred
in previous releases to build directory files with names having the pattern
model_*.c (where * could be any string). The indenting is harmless, but can
cause differences to be detected by source control software that might trigger
unnecessary updates.

Designating Target-Specific Math Functions
Target configurations can expressly specify which floating-point math library
to use when generating code. Real-Time Workshop uses a switchyard called
the Target Function Library (TFL) to designate compiler-specific versions
of math functions. The mappings created in the TFL allow for C run-time
library support specific to a compiler.

Real-Time Workshop provides three different TFLs:

• ansi_tfl_tmw.mat — The ANSI-C library (default)

• iso_tfl_tmw.mat — Extensions for ISO-C/C99

• gnu_tfl_tmw.mat — Extensions for GNU

You choose among them by setting the Target floating point math
environment pull-down in the Software Environment section of the
Interface tab of the Real-Time Workshop Configuration Parameters
dialog. This enables you to specify different run-time libraries for different
configuration sets within a given model.

Selecting ANSI-C provides the ANSI-C set of library functions. For example,
selecting ANSI-C would result in generated code that calls sin() whether
the input argument is double precision or single precision. However, if

5-25

5 Real-Time Workshop 6.0 Release Notes

ISO-C is selected, the call would instead be to the function sinf(), which
is single-precision. If your compiler supports the ISO-C math extensions,
selecting the ISO-C library can result in more efficient code.

Hook Files Describing Hardware Characteristics Are
Deprecated
Real-Time Workshop now provides a menu that includes more than 20 target
processors for the purpose of identifying hardware characteristics such
as word lengths. In the previous release, this information was stored in
user-supplied hook files, which are now deprecated.

When you open a preexisting model that has not been saved using the current
version of Simulink, and select Hardware in the Configuration Parameters
dialog box, the following set of controls appears:

All but one of the parameters below the Device type menu are grayed out.
This is because these characteristics have been preset for the default target
(32-bit Generic), as well as for several dozen known target processors that
you can select from that menu.

Real-Time Workshop only reads existing hook files when a model created
by Version 5 (Release 13) is built for the first time in Version 6 without
the user having first specified characteristics of the Current code
generation execution hardware device on the Configuration
Parameters Hardware Implementation pane. If you build a model
in this under-specified state, Real-Time Workshop will scan the current

5-26

New Features

directory, then the MATLAB path, for an existing hook file with the name
target_rtw_info_hook.m. If the file is found, its instructions override the
defaults in that section. You can subsequently respecify any characteristic
freely. If at any point prior to building the target code you do specify Current
code generation execution hardware device, hook files will be ignored,
as hardware characteristics are now configured.

When a preexisting (pre-Version 6) model is opened, the Hardware
configuration dialog box displays a Configure current execution
hardware device button. This button disappears after being pressed once.
When code is generated (Ctrl+B) for the target the model specifies,

• If the target has a hook file, and the Configure current execution
hardware device button has not yet been pressed,

- The hook file is executed and configures the fields specifying current code
generation execution hardware device.

- A warning is issued to the user that the hook file was used.

- The Configure current execution hardware device button on the
Hardware configuration dialog box is permanently removed for that
model (assuming that you save the model).

• If the target has a hook file and the Configure current execution
hardware device button has been pressed (removing it),

- Code is generated for the target using the hardware characteristics
for the current code generation execution hardware device (which can
default to those of the final embedded hardware device).

- The hook file for the target is ignored, and is from now on;

- A warning is issued that a hook file exists but was not used;

• If the target has no hook file, no message to that effect is issued, and the
current code generation execution hardware device, if left unspecified,
defaults to MATLAB host computer for target device information. A
message is displayed during code generation to indicate this

This second group of Hardware Implementation pane controls governs how
hardware characteristics are handled in generated code. They do not appear
unless Real-Time Workshop is installed. Their appearance varies depending
on whether hardware configuration characteristics were previously specified

5-27

5 Real-Time Workshop 6.0 Release Notes

for the model or not. If they were not, you see a button (as illustrated in
the first of the two above figures) labeled Configure current execution
hardware device. This button never again appears for this model once code
has been generated and the model has been saved.

When you click the Configure current execution hardware device
button, it is replaced by a check box labeled None. This box is selected by
default, as shown in the following figure.

If you deselect this box, controls appear for that section that are identical to
the controls for the Embedded Hardware section above, as shown below (in
this example the TI-C6000 processor is selected).

5-28

New Features

Timing-Related Enhancements

• “Application Lifespan Option Optimizes Timer Data Storage ” on page 5-29

• “Enabling the Rapid Simulation Target to Time Out” on page 5-30

• “New Asynchronous Block Library” on page 5-31

• “Rate Transition Block Improvements” on page 5-32

• “Enhanced Absolute and Elapsed Time Computation” on page 5-34

• “Improved Single-Tasking Code Generation” on page 5-34

Application Lifespan Option Optimizes Timer Data Storage
The Application lifespan (days) field on the Optimization pane of the
Configuration Parameters dialog lets you specify how long an application
which contains blocks that depend on elapsed time should be able to execute
before timer overflow. Specifying it determines the word size used by timers
in the generated code, and can lower RAM usage.

Application lifespan, when combined with the step size of each task,
determinates data type of integer absolute time for each task, as follows:

5-29

5 Real-Time Workshop 6.0 Release Notes

• If your model does not require absolute time, this option affects neither
simulation nor the generated code.

• If your model requires absolute time, this option optimizes the word size
used for storing integer absolute time in generated code. This will ensure
that timers will not overflow within the lifespan you specify. If you set
Application lifespan to Inf, two uint32 words are used.

• If your model contains fixed-point blocks that require absolute time, this
option affects both simulation and generated code.

Using 64 bits to store timing data enables models with a step size of 0.001
microsecond (10E-09 seconds) to run for more than 500 years, which would
rarely be required. To run a model with a step size of one millisecond (0.001
seconds) for one day would require a 32-bit timer (but it could continue
running for 49 days). Application lifespan was an ERT-only option in prior
releases.

Enabling the Rapid Simulation Target to Time Out
The Rapid Simulation (RSim) Real-Time Workshop target now has a timeout
execution option. Use this option to enable the RSim executable to abort if it
is taking excessive time. This can happen, for example, in some models when
zero crossings are frequent and minor step size is small.

To cause an executing RSim to timeout after n seconds, use the -L command
line option followed by n. For example, suppose you created an RSim
executable for the vdp demo; you can run the executable as follows:

vdp -L 20

After vdp (or vdp.exe) executes for 20 seconds the following will happen:

On Windows platforms, the program will terminate with the message:

Exiting program, time limit exceeded
Logging available data ...

On Unix platforms the message will be

** Received SIGALRM (Alarm) signal @ Fri Jul 25 15:43:23 2003
** Exiting model 'vdp' @ Fri Jul 25 15:43:23 2003

5-30

New Features

You do not need to do anything to your model or its Real-Time Workshop
configuration to use this feature. However, you must generate the RSim
executable using Version 6.0 or later of Real-Time Workshop for the -L flag
to be recognized.

New Asynchronous Block Library
The new VxWorks block library (vxlib1) allows you to model and generate
code for asynchronous event handling, including servicing of hardware
generated interrupts, maintenance of timers, asynchronous read and write
operations, and spawning of asynchronous tasks under a real-time operating
system (RTOS).

Although the blocks in the library target a particular RTOS (VxWorks
Tornado), full source code and documentation are provided so that you can
develop blocks supporting asynchronous event handling for your target RTOS.

The new VxWorks block library supports a superset of the functions of the
older Interrupt Templates library. The new library is easier to use, since
special Asynchronous Read and Write blocks are no longer required to handle
rate transitions.

Note The older Interrupt Templates library (vxlib) is obsolete. It is provided
only to allow models created prior to Real-Time Workshop 6.0 to continue
to operate. If you have models that use vxlib blocks, The MathWorks
recommends that you change them to use vxlib1 blocks.

The revised "Asynchronous Support" chapter of the Real-Time Workshop
User’s Guide describes the VxWorks library blocks in detail, including a
detailed description of the C and TLC implementations of the Async Interrupt
and Task Synchronization blocks.

Summary of VxWorks Library Blocks. The blocks in the library are:

• Async Interrupt block: Generates interrupt-level code. Each output of the
Async Interrupt block is associated with a user-specified VxWorks VME
interrupt. When an output is connected to the control input of a triggered

5-31

5 Real-Time Workshop 6.0 Release Notes

subsystem such as a function-call subsystem, the generated subsystem code
is called from an interrupt service routine (ISR).

• Task Synchronization block: a function-call subsystem that spawns an
independent VxWorks task that calls the function-call subsystem connected
to its output. The Task Synchronization block is designed to work in
conjunction with the Async Interrupt block connected its control input.

• Protected Rate Transition block: The Protected Rate Transition block that
is configured to ensure data integrity during data transfers between blocks
running at different priorities.

• Unprotected Rate Transition block: The Unprotected Rate Transition block
is configured to operate in unprotected/non-deterministic mode during data
transfers between blocks running at different priorities.

Note that the Protected and Unprotected Rate Transition blocks are
provided as a convenience. You can use the built-in Simulink Rate
Transition block for the same purpose. Rate Transition blocks can be used
with any target.

Accessing the VxWorks Library. The VxWorks library (vxlib1) is part
of the Real-Time Workshop library. You can access the VxWorks library by
opening the Simulink Library Browser, clicking the plus sign to the left of the
Real-Time Workshop entry, and clicking VxWorks.

Alternatively, type the following MATLAB command to open the VxWorks
library directly:

vxlib1

Rate Transition Block Improvements
Since Release 13, the Simulink Signal Attributes library has included a
built-in block to handle sample rate transitions (in previous releases rate
transitions were handled by Zero-order Hold and Unit Delay blocks, which
still exist). The updated Rate Transition block automatically detects whether
transitions must be slow-to-fast or fast-to-slow, and acts appropriately.
Accordingly, its block parameters dialog no longer includes a setting for Data
transfer type. The four remaining block parameters are:

5-32

New Features

• Ensure data integrity during transfer check box

• Ensure deterministic data transfer check box

• Outport sample time text field

• Initial condition text field

All Rate Transition blocks in a model will be updated to the new block when
the model is saved in Version 6.

When a model using a fixed-step solver is set up for multitasking, Simulink
can auto-insert rate transitions between periodic tasks that run at different
rates and transfer data. Note that the auto-insertion feature does not apply
to transitions to or from non-periodic (asynchronous) tasks. You can control
whether or not auto-insertion can happen with the Automatically handle
data transfers between tasks check box on the Solver pane, as shown
below.

Simulink configures auto-inserted blocks to insure both data integrity and
deterministic data transfer. As mentioned above, they only are inserted when
a model is set up for multitasking. Auto-inserted rate transition blocks are
non-graphic, thus they do not appear on the block diagram. Nevertheless, they
do affect simulation and do affect code generated by Real-Time Workshop,
implemented as semaphores or double buffers, depending on the constraints
being observed.

5-33

5 Real-Time Workshop 6.0 Release Notes

Enhanced Absolute and Elapsed Time Computation
Certain blocks require the value of either absolute time (i.e., the time from the
start of program execution to the present time) or elapsed time (for example,
the time elapsed between two trigger events). The Real-Time Workshop now
provides more efficient time computation services to blocks that request
absolute or elapsed time. These timer services are available to all targets that
support the real-time model (rtModel) data structure. Improvements in the
implementation of absolute and elapsed timers include

• Timers are implemented as unsigned integers in generated code.

• In multirate models, at most one timer is allocated per rate, on an
as-needed basis. If no blocks executing at a given rate require a timer, no
timer is allocated to that rate. This minimizes memory allocated for timers
and significantly reduces overhead involved in maintaining timers.

• Allocation of elapsed time counters for use of blocks within triggered
subsystems is minimized, further reducing memory usage and overhead.

• Real-Time Workshop provides S-function and TLC APIs that let you access
timers for use in your S-functions, in both simulation and code generation.

For more information see “Timing Services” in the Real-Time Workshop
documentation.

Improved Single-Tasking Code Generation
New efficiencies in code generation no longer require code generated for
single-tasking models to test for sample hits in the base rate task. The code
fragment below is an example of such a test in prior versions.

if (rtmIsSampleHit(S,0,tid)) { ...
}

Since the base rate task always has a sample hit, such tests are not needed.
Elimination of this test improves the runtime performance of the generated
code.

GRT and ERT Target Unification

• “Code Format Unification” on page 5-35

5-34

New Features

• “Compatibility Issues for GRT-Based Targets” on page 5-37

• “Real-Time Workshop and Real-Time Workshop Embedded Coder Feature
Set Comparison” on page 5-40

• “Symbol Formatting Options Replaced” on page 5-43
An important goal for both Real-Time Workshop and Real-Time Workshop
Embedded Coder in release 14 has been target unification. Target unification
includes enhancements to the underlying technology and feature sets of both
products, such that:

• Both products use a common backend generated code format. This
enhancement, termed code format unification, has a number of implications
(see “Code Format Unification” on page 5-35).

• The set of features common to both products is expanded. Some features
and efficiencies formerly exclusive to Real-Time Workshop Embedded
Coder and the Embedded Real-Time (ERT) target are now generally
available via the Generic Real-Time (GRT) target. Conversely, the
Real-Time Workshop Embedded Coder now supports some features that
were previously available only via the GRT target (for example, support of
continuous-time blocks and noninlined S-functions).

In general, the GRT and ERT targets have many more common features,
but the ERT target offers additional controls for common features.

• Conversion from GRT-based targets to ERT-based targets is simplified.

• The ERT and GRT targets are fully backward-compatible with existing
applications.

This note provides a high-level overview and comparison of feature set
enhancements and compatibility issues that result from target unification in
Real-Time Workshop 6.0 and Real-Time Workshop Embedded Coder 4.0.

Code Format Unification
Before discussing code format unification, it is necessary to review the
distinction between a target and a code format.

A target (such as the ERT target) is an environment for generating and
building code intended for execution on a certain hardware or operating

5-35

5 Real-Time Workshop 6.0 Release Notes

system platform. A target is defined at the top level by a system target file,
which in turn invokes other target-specific files.

A code format (such as Embedded-C or RealTime) is one property of a target.
The code format controls decisions made at several points in the code
generation process. These include whether and how certain data structures
are generated (for example, SimStruct or rtModel), whether or not static
or dynamic memory allocation code is generated, and the calling interface
used for generated model functions. In general, the Embedded-C code format
is more efficient than the RealTime code format. Embedded-C code format
provides more compact data structures, a simpler calling interface, and static
memory allocation. These characteristics make the Embedded-C code format
the preferred choice for production code generation.

In prior releases, only the ERT target and targets derived from the ERT
target used the Embedded-C code format. Non-ERT targets used other code
formats (e.g., RealTime or RealTimeMalloc).

In release 14, the GRT target uses the Embedded-C code format for backend
code generation. This includes generation of both algorithmic model code and
supervisory timing and task scheduling code. The GRT target (and derived
targets) generates a RealTime code format wrapper around the Embedded-C
code. This wrapper provides a calling interface that is backward-compatible
with existing GRT-based custom targets. The wrapper calls are compatible
with the main program module of the GRT target (grt_main.c). Note that
this use of wrapper calls incurs some calling overhead; the pure Embedded-C
calling interface generated by the ERT target is more highly optimized.

The calling interface generated by the ERT target is described in the "Data
Structures and Program Execution" chapter of the Real-Time Workshop
Embedded Coder documentation. The calling interface generated by the GRT
target is described in the "Program Architecture" chapter of the Real-Time
Workshop documentation.

Since the GRT target now uses the Embedded-C code format for backend code
generation, many Embedded-C optimizations are available to all Real-Time
Workshop users. In general, the GRT and ERT targets have many more
common features, but the ERT target offers additional controls for common
features. The availability of features is now determined by licensing, rather
than being tied to code format.

5-36

New Features

Code format unification simplifies the conversion of GRT-based custom targets
to ERT-based targets. See “Compatibility Issues for GRT-Based Targets” on
page 5-37 for a description of target conversion issues.

Compatibility Issues for GRT-Based Targets
If you have developed a GRT-based custom target, it is simple to make
your target ERT-compatible. By doing so, you can take advantage of many
efficiencies.

There are several approaches to ERT compatibility:

• If your installation is not licensed for Real-Time Workshop Embedded
Coder, you can convert a GRT-based target as described in “Converting
Your Target to Use rtModel” on page 5-38. This enables your custom target
to support all current GRT features, including backend Embedded-C code
generation.

• You can create an ERT-based target, but continue to use your customized
version of grt_main.c module. To do this, you can configure the ERT target
to generate a GRT-compatible calling interface, as described in “Generating
GRT Wrapper Code from the ERT target” on page 5-39. This lets your
target support the full ERT feature set, without changing your GRT-based
runtime interface. This approach requires that your installation be licensed
for Real-Time Workshop Embedded Coder.

• If your installation is licensed for Real-Time Workshop Embedded Coder,
you can re-implement your custom target as a completely ERT-based
target, including use of an ERT generated main program. This approach
lets your target support the full ERT feature set, without the overhead
caused by wrapper calls.

Note If you intend to use custom storage classes (CSCs) with a custom
target, you must use an ERT-based target. See “Custom Storage Classes”
in the Real-Time Workshop Embedded Coder documentation for detailed
information on CSCs.

5-37

5 Real-Time Workshop 6.0 Release Notes

For details on how GRT targets are made call-compatible with previous
versions of Real-Time Workshop, see “The Real-Time Model Data Structure”
in the Real-Time Workshop documentation.

Converting Your Target to Use rtModel. The real-time model data
structure (rtModel) encapsulates model-specific information in a much more
compact form than the SimStruct. Many ERT-related efficiencies depend on
generation of rtModel rather than SimStruct, including:

• Integer absolute and elapsed timing services

• Independent timers for asynchronous tasks

• Generation of improved C-API code for signal and parameter monitoring

To take advantage of such efficiencies, you must update your GRT-based
target to use the rtModel (unless you already did so for release 13). The
conversion requires changes to your system target file, template makefile,
and main program module.

The following changes to the system target file and template makefile are
required to use rtModel instead of SimStruct:

• In the system target file, add the following global variable assignment:

%assign GenRTModel = TLC_TRUE

• In the template makefile, define the symbol USE_RTMODEL. See one of the
GRT template makefiles for an example.

The following changes to your main program module (i.e., your customized
version of grt_main.c) are required to use rtModel instead of SimStruct:

• Include rtmodel.h instead of simstruc.h.

• Since the rtModel data structure has a type that includes the model name,
define the following macros at the top of main program file:

#define EXPAND_CONCAT(name1,name2) name1 ## name2

#define CONCAT(name1,name2) EXPAND_CONCAT(name1,name2)

5-38

New Features

#define RT_MODEL CONCAT(MODEL,_rtModel)

• Change the extern declaration for the function that creates and initializes
the SimStruct to:

extern RT_MODEL *MODEL(void);

• Change the definitions of rt_CreateIntegrationData and
rt_UpdateContinuousStates to be as shown in the Release 14 version
of grt_main.c.

• Change all function prototypes to have the argument 'RT_MODEL' instead
of the argument 'SimStruct'.

• The prototypes for the functions rt_GetNextSampleHit,
rt_UpdateDiscreteTaskSampleHits, rt_UpdateContinuousStates,
rt_UpdateDiscreteEvents, rt_UpdateDiscreteTaskTime, and
rt_InitTimingEngine have changed. Change their names to use the prefix
rt_Sim instead of rt_ and then change the arguments you pass into them.

See the Release 14 version of grt_main.c for the list of arguments passed
into each function.

• Modify all macros that refer to SimStruct to now refer to rtModel.
SimStruct macros begin with the prefix ss, whereas rtModel macros
begin with the prefix rtm. For example, change ssGetErrorStatus to
rtmGetErrorStatus.

Generating GRT Wrapper Code from the ERT target. The Real-Time
Workshop Embedded Coder supports the GRT compatible call interface
option. When this option is selected, the Real-Time Workshop Embedded
Coder generates model function calls that are compatible with the main
program module of the GRT target (grt_main.c). These calls act as wrappers
that interface to ERT (Embedded-C format) generated code.

This option provides a quick way to use ERT target features with a GRT-based
custom target that has a main program module based on grt_main.c.

See “Code Generation Options and Optimizations” in the Real-Time Workshop
Embedded Coder documentation for detailed information on the GRT
compatible call interface option.

5-39

5 Real-Time Workshop 6.0 Release Notes

Real-Time Workshop and Real-Time Workshop Embedded
Coder Feature Set Comparison
The approach you take to ERT compatibility will depend on the feature set
required by your custom target. The following table will help you decide
whether or not you require features licensed for Real-Time Workshop
Embedded Coder.

For detailed information about these features, see the Real-Time Workshop
and Real-Time Workshop Embedded Coder documentation.

Comparison of Features Licensed with Real-Time Workshop Versus
Real-Time Workshop Embedded Coder

Feature
Real-Time Workshop
License

Real-Time Workshop
Embedded Coder
License

rtModel data structure Full rtModel struct
generated.

rtModel is optimized
for the model.
Suppression of error
status field, data
logging fields, and in
the struct is optional.

Custom storage classes
(CSCs)

Code generation ignores
CSCs; objects assigned
a CSC default to Auto
storage class.

Code generation with
CSCs supported.

HTML code generation
report

Basic HTML code
generation report.

Enhanced report with
additional detail and
hyperlinks to the model.

Symbol formatting Symbols (for signals,
parameters etc.) are
generated in accordance
with hard coded default.

Detailed control over
generated symbols.

5-40

New Features

Comparison of Features Licensed with Real-Time Workshop Versus
Real-Time Workshop Embedded Coder (Continued)

Feature
Real-Time Workshop
License

Real-Time Workshop
Embedded Coder
License

User-defined maximum
identifier length for
generated symbols

Supported Supported

Generation of
terminate function

Always generated. Option to suppress
terminate function.

Combined
output/update function

Separate output/update
functions are
generated.

Option to
generate combined
output/update function.

Optimized data
initialization

Not available. Options to suppress
generation of
unnecessary
initialization code for
zero-valued memory,
I/O ports, etc.

Comments generation Basic options to include
or suppress comment
generation.

Options to include
Simulink block
descriptions, Stateflow
object descriptions,
and Simulink data
object descriptions in
comments.

Module Packaging
Features (MPF)

Not supported. Extensive code
customization features.
See the Real-time
Workshop Embedded
Coder documentation.

5-41

5 Real-Time Workshop 6.0 Release Notes

Comparison of Features Licensed with Real-Time Workshop Versus
Real-Time Workshop Embedded Coder (Continued)

Feature
Real-Time Workshop
License

Real-Time Workshop
Embedded Coder
License

Target-optimized data
types header file

Requires full
tmwtypes.h header
file.

Generates optimized
rtwtypes.h header
file, including only the
necessary definitions
required by the target.

User-defined types User defined types
default to base types in
code generation.

User defined data type
aliases are supported in
code generation.

Simplified call interface Non-ERT targets
default to GRT
interface.

ERT and ERT-based
targets generate
simplified interface.

Rate grouping Not supported Supported

Auto-generation of
main program module

Not supported; static
main program module
provided.

Automated and
customizable
generation of main
program module
supported. Static main
program also available.

MAT-file logging No option to suppress
MAT-file logging data
structures.

Option to suppress
MAT-file logging data
structures.

Reusable
(multi-instance) code
generation with static
memory allocation

Not supported. Option to generate
reusable code.

Software constraint
options

Support for floating
point, complex, and
non-finite numbers
always enabled.

Options to enable or
disable support for
floating point, complex,
and non-finite number.

5-42

New Features

Comparison of Features Licensed with Real-Time Workshop Versus
Real-Time Workshop Embedded Coder (Continued)

Feature
Real-Time Workshop
License

Real-Time Workshop
Embedded Coder
License

Application life span User-specified;
determines most
efficient word size
for integer timers.
Defaults to inf.

User-specified;
determines most
efficient word size
for integer timers.

Software-in-the-loop
(SIL) testing

Model reference
simulation target can
be used for SIL testing.

Additional SIL
testing support via
auto-generation of
Simulink S-Function
block.

ANSI-C code generation Supported Supported

ISO-C code generation Supported Supported

GNU-C code generation Supported Supported

Generate scalar inlined
parameters

Not supported Supported

MAT-file variable name
modifier

Supported Supported

Data exchange: C-API,
External Mode, ASAP2

Supported Supported

Symbol Formatting Options Replaced
This note discusses changes in the way that symbols are generated for

• Signals and parameters that have Auto storage class

• Subsystem function names that are not user-defined

• All Stateflow names

5-43

5 Real-Time Workshop 6.0 Release Notes

The following options, all related to formatting generated symbols, have been
removed from the Real-Time Workshop GUI and replaced by a default symbol
formatting specification.

• Prefix model name to global identifiers

• Include System Hierarchy Number in Identifiers

• Include data type acronym in identifier

The components of a generated symbol now include the root model name,
followed by the name of the generating object (signal, parameter, state, etc.),
followed by a unique name mangling string that is generated (if required) to
resolve potential conflicts with other generated symbols.

Note that the length of generated symbols is limited by the Maximum
identifier length parameter specified on the Real-Time Workshop /
Symbols pane of the Configuration Parameters dialog. The default length
is 31 characters. When there is a potential name collision between two
symbols, a name mangling string is generated. The string has the minimum
number of characters required to avoid the collision. The other symbol
components are then inserted. If the Maximum identifier length is not
large enough to accommodate full expansions of the other components, they
are truncated. To avoid this outcome, it is good practice to

• Avoid name collisions in general. One way to do this is to avoid using
default block names (for example, Gain1, Gain2...) when there are many
blocks of the same type in the model. Also, whenever possible, make
subsystems atomic and reusable.

• Where possible, increase the Maximum identifier length to accommodate
the length of the symbols you expect to generate.

Model Referencing Considerations. Within a model that uses model
referencing, there can be no collisions between the names of the constituent
models. When generating code from a model that uses model referencing, the
Maximum identifier length must be large enough to accommodate full the
root model name and the name mangling string (if any). A code generation
error occurs if Maximum identifier length is not large enough.

5-44

New Features

When a name conflict occurs between a symbol within the scope of a
higher-level model and a symbol within the scope of a referenced model, the
symbol from the referenced model is preserved. Name mangling is performed
on the symbol from the higher-level model.

Note that the Real-Time Workshop Embedded Coder provides a Symbol
format field that lets you control the formatting of generated symbols in
much greater detail. See “Code Generation Options and Optimizations” in the
Real-Time Workshop Embedded Coder documentation for more information.

5-45

5 Real-Time Workshop 6.0 Release Notes

Major Bug Fixes
Real-Time Workshop 6.0 includes several bug fixes made since Version 5.1.1.
This section describes the particularly important Version 6.0 bug fixes.

If you are viewing these Release Notes in PDF form, refer to the HTML form
of the Release Notes, using either the Help browser or the MathWorks Web
site, and use the link provided.

If you are upgrading from a version earlier than Version 6.0, you should also
review major bug fixes for all versions between the version currently installed
and Version 6.0.

Upgrading from an Earlier Release
This section discusses issues involved with upgrading to Real-Time Workshop
6.0 from Version 5.0.

If you are upgrading from Version 5.0, you should also see Version 5.1.1
“Major Bug Fixes” on page 6-3, Version 5.1 “Major Bug Fixes” on page 8-4,
and Version 5.01 “Major Bug Fixes” on page 8-4.

If you are upgrading from Version 4.0, see Chapter 11, “Real-Time Workshop
4.0 Release Notes”.

Global Data Identifiers for Targets Now Incorporate
Model Name
Global data structures, such as rtB, rtP and rtY now have new identifiers
in ERT and GRT generated code. For GRT, these names now include the
model name followed by _B, _P, _Y, etc. (ERT targets provide you with flexible
naming options; see “Symbol Formatting Options Replaced” on page 5-43).
The construction of identifiers was changed to prevent name clashes when
code for models containing Model blocks is generated and linked. If you are
interfacing external code to any Simulink global data, you will probably
need to use the GRT compatible calling interface for ERT-based targets (see
“Generating GRT Wrapper Code from the ERT target” on page 5-39 for more

5-46

Upgrading from an Earlier Release

information). The GRT interface enables you to access global data using
the deprecated symbols via a set of macros that map old-style to new-style
identifiers. See “Backwards Compatibility of Code Formats” in the Real-Time
Workshop documentation for details.

Selecting a Target Programmatically
Simulink models store model-wide parameters and target-specific data in
configuration sets in Release 14. Every configuration set contains a component
that defines the structure of a particular target and the current values of
target options. Some of this information is loaded from a system target file
when you select a target using the System target file browser. You can
configure models to generate alternative target code by copying and modifying
old or adding new configuration sets and browsing to select a new target.
Subsequently, you can interactively select an active configuration from among
these sets (only one configuration set can be active at a given time). Scripts
that automate target selection therefore need to emulate this process. They
can do this via a new function, switchTarget.

The following example shows how to select a target properly, without
referencing the deprecated RTWSystemTargetFile or rtwOptions. The
example first obtains a handle (cs) to the active configuration set. Next, it
stores string variables that correspond to the required Real-Time Workshop
system target file, Template makefile, and make command settings. The
system target file is then selected by passing the cs object and the stf string
to the switchTarget function.

cs = getActiveConfigSet(model);
stf = 'ert.tlc';
tmf = 'ert_default_tmf';
mc = 'make_rtw';
switchTarget(cs,stf,[]);
set_param(cs,'TemplateMakefile',tmf);
set_param(cs,'MakeCommand',mc);

For related information, see “Accessing the rtwOptions Structure Correctly”
on page 5-48.

5-47

5 Real-Time Workshop 6.0 Release Notes

Accessing the rtwOptions Structure Correctly
A new function, getActiveConfigSet, provides safe access to option settings
stored in the active configuration set. getActiveConfigSet returns an object
through which you can access properties of the model’s active configuration
set. The following example shows how to call getActiveConfigSet in order to
turn the ERT option Single output/update function off.

cs = getActiveConfigSet(model);
set_param(cs, 'CombineOutputUpdateFcns', 'off');

In prior releases, it was possible to access code generation options and other
model parameters stored in the rtwOptions data structure directly, by using
get_param and set_param calls. In the following code excerpt, for example,
the value of the ERT Single output/update function option is changed
from on to off.

options = get_param(model, 'RTWOptions');

strrep(options, 'CombineOutputUpdateFcns=1', 'CombineOutputUpdateFcns=0');

set_param(model, 'RTWOptions', options);

If you have written code that accesses the rtwOptions structure directly, as in
the above example, you should update your code to use getActiveConfigSet
instead. Due to changes in underlying data structures, code that accesses
rtwOptions directly as above will no longer work correctly.

An alternative and more flexible method for automatic configuration of model
options is available to users of the Real-Time Workshop Embedded Coder. See
“Auto-Configuring Models for Code Generation” in the Real-Time Workshop
Embedded Coder documentation for more information.

Defining and Displaying Custom Target Options
For release 14, extensive improvements and revisions have been made in the
appearance and layout of code generation options and other target-specific
options for Real-Time Workshop targets. If you have developed a custom
target, The MathWorks recommends that you take advantage of the
Model Explorer to present target options to end users. This requires some
modifications to your custom system target file. If you do not want to make
these modifications, a mechanism for using the old-style Simulation
Parameters dialog is available for backwards compatibility.

5-48

Upgrading from an Earlier Release

As an example of what users would see if you do not upgrade, below is
an Real-Time Workshop component dialog for the Embedded Target for
Motorola® HC12 product, before its system target file was converted to fully
use configuration dialogs.

Instead of one Real-Time Workshop/Target tab, this dialog has four: ERT
Code Generation options 1 through 3, External mode options, and
Code Warrior options (not all are visible in the figure). Targets that have
not been updated to use configuration sets will display similar dialogs. In
addition, there is a Launch old simprm dialog button at the bottom of
the dialog. Targets that use the Simulation Parameters dialog to handle
callbacks will work without updating for Model explorer only if the user uses
this button and then builds from the Simulation Parameters dialog. Note
that configuration set dialogs can issue callbacks but handle them differently
than did the Simulation Parameters dialog.

See the Real-Time Workshop Embedded Coder 4.0 release notesChapter 11,
“Real-Time Workshop 4.0 Release Notes” for details.

5-49

5 Real-Time Workshop 6.0 Release Notes

SelectCallback Function for System Target Files
The Release 14 API for system target file callbacks provides a new function
for use in system target files. SelectCallback is associated with the target
rather than with any of its individual options. If a SelectCallback function
is implemented for the target, it is triggered once, when the user selects the
target via the System Target File browser.

To implement this callback, use the SelectCallback field of the
rtwgensettings structure. The following code installs a SelectCallback
function:

rtwgensettings.SelectCallback =
['custom_open_callback_handler(hDlg, hSrc)'];

The arguments to the SelectCallback function (hDlg, hSrc) are handles to
private data used by the callback API functions. These handles are restricted
to use in system target file callback functions. They should be passed in
without alteration, as in this example:

slConfigUISetVal(hDlg, hSrc, 'ModelReferenceCompliant', 'on');

If you have developed a custom target and you want it to be compatible
with model referencing, you must implement a SelectCallback function to
declare model reference compatibility. See “Model Reference Compatibility
for Custom Targets” on page 5-54 for an example.

Supporting the Shared Utilities Directory in the Build
Process
The shared utilities directory (slprj/target/_sharedutils) typically stores
generated utility code that is common between a top-level model and the
models it references. You can also force the build process to use a shared
utilities directory for a standalone model. See “Project Directory Structure
for Model Reference Targets” in the Real-Time Workshop documentation for
details.

If you want your target to support compilation of code generated in the shared
utilities directory, several updates to your template makefile (TMF) are
required. Note that support for the shared utilities directory is a necessary,
but not sufficient, condition for supporting Model Reference builds. See “Model

5-50

Upgrading from an Earlier Release

Reference Compatibility for Custom Targets” on page 5-54 to learn about
additional updates that are needed for supporting Model Reference builds.

The exact syntax of the changes can vary due to differences in the make
utility and compiler/archive tools used by your target. The examples below
are based on the GNU make utility. You can find the following updated TMF
examples for GNU and Microsoft Visual C make utilities in the GRT and
ERT target directories:

• GRT: matlabroot/rtw/c/grt/

- grt_lcc.tmf

- grt_vc.tmf

- grt_unix.tmf

• ERT: matlabroot/rtw/c/ert/

- ert_lcc.tmf

- ert_vc.tmf

- ert_unix.tmf

Use the GRT or ERT examples as a guide to the location, within the TMF, of
the changes and additions described below.

Note The ERT-based TMFs contain extra code to handle generation of ERT
S-functions and Model Reference simulation targets. Your target does not
need to handle these cases.

Make the following changes to your TMF to support the shared utilities
directory:

1 Add the following make variables and tokens to be expanded when the
makefile is generated:

SHARED_SRC = |>SHARED_SRC<|
SHARED_SRC_DIR = |>SHARED_SRC_DIR<|
SHARED_BIN_DIR = |>SHARED_BIN_DIR<|
SHARED_LIB = |>SHARED_LIB<|

5-51

5 Real-Time Workshop 6.0 Release Notes

SHARED_SRC specifies the shared utilities directory location and the source
files in it. A typical expansion in a makefile is

SHARED_SRC = ../slprj/ert/_sharedutils/*.c

SHARED_LIB specifies the library file built from the shared source files, as
in the following expansion.

SHARED_LIB = ../slprj/ert/_sharedutils/rtwshared.lib

SHARED_SRC_DIR and SHARED_BIN_DIR allow specification of separate
directories for shared source files and the library compiled from the source
files. In the current release, all TMFs actually use the same path, as in the
following expansions.

SHARED_SRC_DIR = ../slprj/ert/_sharedutils
SHARED_BIN_DIR = ../slprj/ert/_sharedutils

1 Set the SHARED_INCLUDES variable according to whether shared utilities
are in use. Then append it to the overall INCLUDES variable.

SHARED_INCLUDES =

ifneq ($(SHARED_SRC_DIR),)

SHARED_INCLUDES = -I$(SHARED_SRC_DIR)

endif

INCLUDES = -I. $(MATLAB_INCLUDES) $(ADD_INCLUDES) \

$(USER_INCLUDES) $(SHARED_INCLUDES)

2 Update the SHARED_SRC variable to list all shared files explicitly.

SHARED_SRC := $(wildcard $(SHARED_SRC))

3 Create a SHARED_OBJS variable based on SHARED_SRC.

SHARED_OBJS = $(addsuffix .o, $(basename $(SHARED_SRC)))

5-52

Upgrading from an Earlier Release

4 Create an OPTS (options) variable for compilation of shared utilities.

SHARED_OUTPUT_OPTS = -o $@

5 Provide a rule to compile the shared utility source files.

$(SHARED_OBJS) : $(SHARED_BIN_DIR)/%.o :
$(SHARED_SRC_DIR)/%.c

$(CC) -c $(CFLAGS) $(SHARED_OUTPUT_OPTS) $<

6 Provide a rule to create a library of the shared utilities. The following
example is Unix-based.

$(SHARED_LIB) : $(SHARED_OBJS)
@echo "### Creating $@ "
ar r $@ $(SHARED_OBJS)
@echo "### Created $@ "

7 Add SHARED_LIB to the rule that creates the final executable.

$(PROGRAM) : $(OBJS) $(LIBS) $(SHARED_LIB)

$(LD) $(LDFLAGS) -o $@ $(LINK_OBJS) $(LIBS) $(SHARED_LIB)
$(SYSLIBS)

@echo "### Created executable: $(MODEL)"

8 Remove any explicit reference to rt_nonfinite.c from your TMF. For
example. change

ADD_SRCS = $(RTWLOG) rt_nonfinite.c

to

ADD_SRCS = $(RTWLOG)

Note If your target interfaces to a development environment that is not
makefile based, you must make equivalent changes to provide the needed
information to your target compilation environment.

5-53

5 Real-Time Workshop 6.0 Release Notes

Model Reference Compatibility for Custom Targets
This note describes how to adapt your custom target for code generation
compatibility with the model reference features introduced in Release 14.
Most of the guidelines below concern required modifications to your system
target file (STF) and template makefile (TMF).

General Considerations

• A model reference compatible target must be derived from the ERT or
GRT targets.

• When generating code from a model that references another model, both
the top-level model and the referenced models must be configured for the
same code generation target.

• Note that the External mode option is not supported in model reference
Real-Time Workshop target builds. If the user has selected this option, it
is ignored during code generation.

• To support model reference builds, your TMF must support use of the
shared utilities directory, as described in “Supporting the Shared Utilities
Directory in the Build Process” on page 5-50.

System Target File Modifications
Your STF must implement a SelectCallback function (see “SelectCallback
Function for System Target Files” on page 5-50). Your SelectCallback
function must declare model reference compatibility by setting the
ModelReferenceCompliant flag.

The callback is executed if the function is installed in the SelectCallback
field of the rtwgensettings structure in your STF. The following code installs
the SelectCallback function:

rtwgensettings.SelectCallback =
['custom_open_callback_handler(hDlg, hSrc)'];

Your callback should set the ModelReferenceCompliant flag as follows.

slConfigUISetVal(hDlg, hSrc, 'ModelReferenceCompliant',
'on');

5-54

Upgrading from an Earlier Release

See Chapter 11, “Real-Time Workshop 4.0 Release Notes” for details on the
callback API, including slConfigUISetVal.

Template Makefile Modifications
In addition to the TMF modifications described in “Supporting the Shared
Utilities Directory in the Build Process” on page 5-50, you must modify your
TMF variables and rules. See “Template Makefile Modifications” in the
Real-Time Workshop documentation for instructions.

Macro Required in Template Make File for Tornado
Target
Tornado 2.2.1 installs some standard header files in an include directory
under the target compiler target directory. For example, if you are targeting
the Motorola 68k processor for VxWorks with the GCC 2.96 compiler, Tornado
installs the header files at the following location:

WIND_BASE/host/WIND_HOST_TYPE/lib/gcc-lib/m68k-wrs-vxworks
/gcc-2.96/include

To use Tornado 2.2.1 or higher with the Tornado (VxWorks) Real-Time Target,
tornado.tlc, you must enable a macro in template makefile tornado.tmf.
To enable the macro

1 Open matlabroot/rtw/c/tornado/tornado.tmf.

2 Search for TORNADO_TARGET_COMPILER_INCLUDES.

3 Uncomment the macro TORNADO_TARGET_COMPILER_INCLUDES and set it to
the include directory that contains the Tornado standard header files.

Given the path shown above, you would set the macro as follows:

TORNADO_TARGET_COMPILER_INCLUDES =
$(WIND_BASE)/host/$(WIND_HOST_TYPE)/lib/gcc-lib/m68k-wrs-v
xworks/gcc-2.96/include

Although this example shows the macro definition wrapped, you should
include it on a single line.

5-55

5 Real-Time Workshop 6.0 Release Notes

If you are using a version of Tornado lower than 2.2.1, leave the macro
commented out.

Custom Storage Classes Can No Longer Be Used with
GRT Targets
In prior releases, it was possible to use Custom Storage Classes with the
Generic Real-Time Target if a Real-Time Workshop Embedded Coder license
was available. In Release 14, you can no longer use Custom Storage Classes
when you generate code for GRT-based targets. If you have licensed Real-Time
Workshop Embedded Coder, you should instead use ERT Target, and enable
the GRT compatible call interface option (found on the Real-Time
Workshop/Interface tab). Doing this will generate GRT-compatible code
using the full code generation capabilities of Real-Time Workshop Embedded
Coder, including Custom Storage Classes.

For information on how GRT and ERT targets now compare, see “GRT and
ERT Target Unification” on page 5-34. See “Code Generation Options and
Optimizations” in the Real-Time Workshop Embedded Coder documentation
for detailed information on the GRT compatible call interface option.

Accessing the Number of Sample Times from TLC for
Custom Targets
In previous release, you could directly access an undocumented TLC
variable, NumSampleTimes, which held the number of periodic (synchronous)
sample times. In the current release the variable that holds the number
of periodic sample times is called NumSynchronousSampleTimes. In
addition, there are two new variables, NumAsynchronousSampleTimes and
NumVariableSampleTimes. The total number of sample times in a model
is given by:

NumSampleTimes = NumSynchronousSampleTimes +
NumAsynchronousSampleTimes + NumVariableSampleTimes

Do not use NumSampleTimes. Instead, call TLC library functions, as follows:

• LibNumDiscreteSampleTimes() to access NumSynchronousSampleTimes

5-56

Upgrading from an Earlier Release

• LibNumAsynchronousSampleTimes() to access
NumAsynchronousSampleTimes

TLC TLCFILES Built-in Now Returns the Full Path to
Model File Rather Than the Relative Path
A change in TLC invocation now specifies a full path to model files rather than
a relative path, creates backwards incompatibility in some custom targets.

When migrating Release 13 targets to Release 14, custom target use of the
TLC function TLCFILES to determine context, such as the path to the model
file, may be affected by this change.

ISSLPRMREF TLC Built-in Provides Support for
Parameter Sharing with Simulink
To support parameter sharing with Simulink, a new built-in function
(ISSLPRMREF) has been added to the Target Language Compiler. It returns a
Boolean value indicating whether its argument is a reference to a Simulink
parameter or not. Using this function can save memory and time during
code generation. Here is an example:

%if !ISSLPRMREF(param.Value)
%assign param.Value = CAST("Real", param.Value)

%endif

Additional Argument for TLC
GENERATE_FORMATTED_VALUE Built-in
The GENERATE_FORMATTED_VALUE built-in has a new optional third argument.
The syntax for the function is now

GENERATE_FORMATTED_VALUE(expr, string, expand)

The third argument is a Boolean, which when TRUE, causes expr to be
expanded into raw text before being output. expand = TRUE uses much more
memory than the default (FALSE); set expand = TRUE only if the parameter
text needs to be processed for some reason before being written to disk.

5-57

5 Real-Time Workshop 6.0 Release Notes

Known Software and Documentation Problems

Real-Time Workshop Documentation Status
The Real-Time Workshop Getting Started Guide has been fully updated for
Version 6.1, and includes a new tutorial on generating code for referenced
models. The Real-Time Workshop User’s Guide is updated, and includes
most of the information on new features described in this chapter. The
Real-Time Workshop Target Language Compiler Reference Guide has also
been updated; note that it no longer includes an appendix describing all the
records that might be encountered in a model.rtw file. Some Simulink and
Real-Time Workshop Embedded Coder documentation is also relevant to
Real-Time Workshop users. This chapter of release notes references sections
of those documents.

Refer to the following sections in the "New Features" part of this chapter for
overviews of changes and enhancements to Real-Time Workshop and details
on how to use them. The new features are categorized as follows:

• “User Interface and Configuration Enhancements” on page 5-2

• “Model Referencing (Model Block) Enhancements” on page 5-9

• “Signal, Parameter Handling and Interfacing Enhancements” on page 5-10

• “External Mode Enhancements” on page 5-18

• “Code Customization Enhancements” on page 5-23

• “Timing-Related Enhancements” on page 5-29

• “GRT and ERT Target Unification” on page 5-34

Also see “Upgrading from an Earlier Release” on page 5-46 for more details
on compatibility issues between this and previous versions, particularly
with respect to target customizations. You can find related details in the
“Real-Time Workshop Embedded Coder 4.0 Release Notes”.

DSP Support Documentation Error
The Real-Time Workshop User’s Guide Version 5 section "DSP Processor
Support" on p. 14-107 contained obsolete information, regarding how to
specify word sizes.

5-58

Known Software and Documentation Problems

DSP targets may use registers with sizes other than 32 bits and vary in
their saturation and overflow behavior. In Version 5 (Release 13), these
characteristics were specified by target-specific hook files, which were
provided for all Version 5 targets supplied by The MathWorks. The %assign
DSP32=1 command to the system target makefile and the -DDSP32=1 command
to the template makefile that formerly handled DSP targets were deprecated
in Version 5 and no longer have any effect. However, the documentation did
not reflect that fact.

In the current version of Real-Time Workshop, hardware word sizes and other
characteristics are specified on a per-processor basis using the Hardware
configuration dialog. For more information, see “Hook Files Describing
Hardware Characteristics Are Deprecated” on page 5-26.

No Code Generation Support for 64-bit Integer
Values
Since Release 13, MATLAB has supported both signed (INT64) and unsigned
(UINT64) integers. There is, however, no corresponding support in Real-Time
Workshop for such values, meaning that they cannot be read from the
Workspace or declared in generated code, including downcasts.

Setting Environment Variable to Run Rapid Simulation
Target Executables on Solaris
To run RSim executables outside of MATLAB on the Solaris platform, you
need to modify your LD_LIBRARY_PATH environment variable to include
bin/sol2 directory where MATLAB is installed. For example, if you
have installed MATLAB under /usr/local/MATLAB then you need to add
/usr/local/MATLAB/bin/sol2 to your environment variable.

Limitation Affecting Rolling Regions of Discontiguous
Signals
This note describes a limitation affecting discontiguous signals that have
regions that have a width greater than or equal to the Loop unrolling
threshold. This parameter is set in the Optimizations pane of the
Configuration parameters dialog.)

5-59

5 Real-Time Workshop 6.0 Release Notes

Such signal regions are called rolling regions.

If a rolling region of a discontiguous signal has storage class
ImportedExternPointer, all other rolling regions of the signal must also have
storage class ImportedExternPointer. Otherwise, a code generation error is
displayed. If this error occurs, try increasing the Loop unrolling threshold.

Code Generation Failure in Nested Directories Under
Windows 98
This note describes a limitation affecting both the Simulink Accelerator and
Real-Time Workshop, under Windows 98. The problem is due to a limitation
of Windows 98.

If the present working directory (pwd) is a folder nested in 7 or more levels,
Real-Time Workshop (or Simulink Accelerator) cannot generate code. The
workaround is to connect to a higher-level (less deeply nested) directory before
initiating the build process.

Turn the New Wrap Lines Option Off
The MATLAB Command Window has a new Wrap lines option. Real-Time
Workshop frequently displays very long message lines as a build progresses.
This can cause some display problems. Therefore, when using Real-Time
Workshop, you can turn the Wrap lines option off using the Preferences
setting.

ASAP2 File Generation Changes
The Generating ASAP2 Files chapter in the Real-Time Workshop Embedded
Coder User’s Guide has been moved to an appendix in the Real-Time
Workshop User’s Guide, and has been updated as explained below.

All procedures have been updated to reflect the fact that the Simulation
Parameters dialog has been replaced by the Configuration Parameters
dialog.

The ASAP2 file generation feature is available to Real-Time Workshop
users who do not have a Real-Time Workshop Embedded Coder licence. See

5-60

Known Software and Documentation Problems

“Generating ASAP2 Files” in the Real-Time Workshop documentation for
details.

Some changes occurred in the ASAP2 file structure on the MATLAB path.

The following property names for ASAP2 objects ASAP2.Parameter and
ASAP2.Signal have been replaced with standard Simulink object properties.

Property Name... Changed To...

LONGIG_ASAP2 Description

PhysicalMin_ASAP2 Min

PhysicalMax_ASAP2 Max

Units_ASAP2 DocUnits

See “Generating ASAP2 Files” in the Real-Time Workshop documentation for
details.

Note Release 14 supports ASAP2 file generation using built in Simulink
data objects. This allows you to use data objects of Simulink.Signal,
Simulink.Parameter, and derived classes to generate ASAP2 files. The
ASAP2 Appendix of the Real-Time Workshop User’s Guide explains that,
to generate ASAP2 files, you should define each signal or parameter as
an ASAP2.Signal or ASAP2.Parameter data object. The appendix refers to
the supplied asap2demo to illustrate this. Note, however, that even though
ASAP2.Signal and ASAP2.Parameter are supported in Release 14, you
should define data objects using the built-in classes Simulink.Signal and
Simulink.Parameter instead of using ASAP2.Signal and ASAP2.Parameter.
For details, see the new demo, rtwdemo_asap2. The ASAP2 appendix will
be updated in a subsequent release.

Custom Code in Configuration Sets Is Ignored by
Certain Targets
Code that you place in the Custom Code pane of the Real-Time Workshop
Configuration Parameters dialog is ignored by the following targets:

5-61

5 Real-Time Workshop 6.0 Release Notes

• Accelerator

• Real-Time Workshop S-function target

• Model reference simulation target

Custom code can be used with ERT and GRT whether or not the model being
built references included models.

5-62

6

Real-Time Workshop 5.1.1
Release Notes

6 Real-Time Workshop 5.1.1 Release Notes

New Features
The following new feature is provided in Version 5.1.1 of Real-Time Workshop.

New -dr Command Line Switch in TLC Detects Cyclic
Record Creation
The -dr command line option enables the Target Language Compiler to
detect at run time when cyclic records are created and to produce a diagnostic
message.

Cyclic records are problematic because they cause memory leaks in TLC.
A cyclic record is one which ends up pointing to itself. They only can be
constructed manually, as in the following example:

%createrecord x { } %% create an empty record x
%createrecord y { } %% create an empty record y

%addtorecord x field y %% add a field to x which points to y
%addtorecord y field x %% add a field to y which points to x

At this point, a cyclic record exists, i.e. x.field.field == x

As this feature significantly slows Target Language Compiler performance, it
is off by default.

6-2

Major Bug Fixes

Major Bug Fixes
Real-Time Workshop 5.1.1 includes important bug fixes made since Version
5.1.

If you are viewing these Release Notes in PDF form, refer to the HTML form
of the Release Notes, using either the Help browser or the MathWorks Web
site, and use the link provided.

If you are upgrading from a version earlier than Version 5.1.1, you should
also review major bug fixes for all versions between the version currently
installed and Version 5.1.1.

Upgrading from an Earlier Release
If you are upgrading from a version earlier than Version 5.1.1, you should also
see the Release Notes for all versions between the version currently installed
and Version 5.1.1.

Inaccessible Signal Reporting
In previous releases, Simulink and the Real-Time Workshop reported an error
whenever the Floating Scope or a user-written S-function tried to access an
inaccessible signal during simulation or code generation. In this release,
Simulink displays only a warning if you use the sim command to start the
simulation. Real-Time Workshop generates neither a warning nor an error
message.

6-3

6 Real-Time Workshop 5.1.1 Release Notes

6-4

7

Real-Time Workshop 5.1
Release Notes

7 Real-Time Workshop 5.1 Release Notes

Major Bug Fixes
Real-Time Workshop 5.1 includes important bug fixes made since Version
5.0.1.

If you are viewing these Release Notes in PDF form, refer to the HTML form
of the Release Notes, using either the Help browser or the MathWorks Web
site, and use the link provided.

If you are upgrading from a version earlier than Version 5.1, you should also
see the Release Notes for all versions between the version currently installed
and Version 5.1.1

7-2

8

Real-Time Workshop 5.0.1
Release Notes

8 Real-Time Workshop 5.0.1 Release Notes

New Features
This section introduces the new features and enhancements added in
Real-Time Workshop since Version 5.0 (Release 13).

Expanded Hook File Options
This update adds new options for specifying target characteristics via hook
files.

During its build process, Real-Time Workshop checks for the existence of
target_rtw_info_hook.m, where target is the base file name of the active
system target file. For example, if your system target file is grt.tlc, then the
hook file name is grt_rtw_info_hook.m. If the hook file is present (i.e., is on
the MATLAB path), the target specific information is extracted via the API
found in this file. Otherwise, the host computer is the assumed target.

Three hook file keyword options have been added since release 13:

• TypeEmulationWarnSuppressLevel: Used to suppress warnings about
emulation of word sizes. The default value is 0 which gives full warnings.
This is the preferred setting when generating code for the production
target. Increasing the value gives less warnings. When generating code
for a rapid prototyping system, emulation may not be a concern and a
suppression level of 2 may be desirable.

• PreprocMaxBitsSint: Specify limitations of the target C preprocessor
to do math with signed integers. This is used to prevent errors in the
preprocessor phase.

As an example, suppose the target had 64-bit longs. Porting the generated
code to a machine that does not have 64-bit longs can lead to errors in
the processing of integer data types. To prevent these errors, a check is
included in the generated code.

#if (LONG_MAX != (0x7FFFFFFFFFFFFFFFL))
#error Code was generated for compiler with different sized
longs.
#endif

8-2

New Features

This code requires the preprocessor to compare signed 64-bit integers.
Some preprocessors have bugs that cause such comparisons to yield
incorrect results. The preprocessor math may only be fully correct for say
32-bit signed integers. To specify, this PreprocMaxBitsSint would be set to
32. Generating the code with this setting causes problematic size checks to
be skipped.

#if 0
/*
Skip this size verification because of preprocessor
limitation
*/
#if (LONG_MAX != (0x7FFFFFFFFFFFFFFFL))
#error Code was generated for compiler with different sized
longs.
#endif
#endif

• PreprocMaxBitsUint: Specify limitations of the target C preprocessor to do
math with unsigned integers. This is just like PreprocMaxBitsSint except
that it pertains to unsigned integer operations such as

#if (ULONG_MAX != (0xFFFFFFFFFFFFFFFFUL))

If you are not certain about the proper settings for your target, type
rtwtargetsettings in MATLAB for more details.

Hook Files for Customizing Make Commands
Custom targets may require a target-specific hook file to generate
an appropriate make command when a non-default compiler is used.
Such M-files should be located on the MATLAB path and be named
target_wrap_make_cmd_hook.m, e.g. MPC555pil_wrap_make_cmd_hook.m for
the MPC555 PIL target. When such a file exists, and returns an appropriate
make command, Real-Time Workshop will override its default (e.g., Lcc)
batch file wrapping code. For an example make command hook file, see
matlabroot/toolbox/rtw/rtw/wrap_make_cmd.m. Note that such hook
files are distinct from the target-specific hook files that are used to describe
hardware characteristics (see above).

8-3

8 Real-Time Workshop 5.0.1 Release Notes

Major Bug Fixes
Real-Time Workshop 5.0.1 includes several important bug fixes made since
Version 5.0.

If you are viewing these Release Notes in PDF form, refer to the HTML form
of the Release Notes, using either the Help browser or the MathWorks Web
site, and use the link provided.

If you are upgrading from a version earlier than Version 5.0.1, you should also
see Version 5.0 “Major Bug Fixes” on page 9-26.

8-4

9

Real-Time Workshop 5.0
Release Notes

9 Real-Time Workshop 5.0 Release Notes

Release Summary
Real-Time Workshop 5.0 includes many new features, numerous
improvements in the quality of generated code, as well as enhancements to
existing features. This section summarizes new features and enhancements
added in the Real-Time Workshop 5.0 since the Real-Time Workshop 4.1
release.

New Features and Enhancements

• “Code Generation Infrastructure Enhancements” on page 9-2

• “Code Generation Configuration Features” on page 9-3

• “Block-Level Enhancements” on page 9-3

• “Target and Mode Enhancements” on page 9-4

• “TLC, model.rtw, and Library Enhancements” on page 9-4

• “Documentation Enhancements” on page 9-4

Code Generation Infrastructure Enhancements

• “Code for Nonvirtual Subsystems Is Now Reusable” on page 9-7

• “Packaging of Generated Code Files Simplified” on page 9-9

• “Most Targets Use rtModel Instead of Root SimStruct” on page 9-12

• “Hook Files for Communicating Target-specific Word Characteristics” on
page 9-12

• “Code Generation Unified for Real-Time Workshop and Stateflow” on page
9-13

• “Conditional Input Branch Execution Optimization” on page 9-13

9-2

Release Summary

Code Generation Configuration Features

• “Diagnostics Pane Items Classified into Logical Groups” on page 9-13

• “Comments Not Generated for Reduced Blocks When "Show eliminated
statements" Is Off” on page 9-14

• “New General Code Appearance Options” on page 9-14

• “Identifier Construction for Generated Code Has Been Simplified” on page
9-16

• “GUI Control over Behavior of Assertion Blocks in Generated Code” on
page 9-17

• “GUI Control Over TLC %assert Directive Evaluation” on page 9-18

Block-Level Enhancements

• “New Rate Transition Block” on page 9-18

• “S-Function API Extended to Permit Users to Define DWork Properties”
on page 9-19

• “Lookup Table Blocks Use New Run-Time Library for Smaller Code” on
page 9-20

• “Relay Block Now Supports Frame-based Processing” on page 9-20

• “Transport Delay and Variable Transport Delay Improvements” on page
9-20

• “Storage Classes for Data Store Memory Blocks” on page 9-20

9-3

9 Real-Time Workshop 5.0 Release Notes

Target and Mode Enhancements

• “Rapid Simulation Target Now Supports Variable-Step Solvers” on page
9-21

• “External Mode Support for Rapid Simulation Target” on page 9-21

• “External Mode Support for ERT” on page 9-21

• “External Mode Supports Uploading Signals of All Storage Classes” on
page 9-21

• “Expanded Support for Borland C Compilers” on page 9-21

TLC, model.rtw, and Library Enhancements

• “New Simulink Data Object Properties Mapped to model.rtw Files” on
page 9-22

• “SPRINTF Built-in Function Added to TLC” on page 9-22

• “LCC Now Links Libraries in Directory sys/lcc/lib” on page 9-23

• “The BlockInstanceData Function has been Deprecated” on page 9-23

Documentation Enhancements

• “Generate HTML Report Option Available for Additional Targets” on page
9-23

• “Expression Folding API Documentation Available” on page 9-24

• “Real-Time Workshop Documentation” on page 9-24

• “Target Language Compiler Documentation” on page 9-25

Major Bug Fixes

• “ImportedExtern and ImportedExternPointer Storage Class Data No
Longer Initialized” on page 9-27

• “External Mode Properly Handles Systems with no Uploadable Blocks”
on page 9-27

9-4

Release Summary

• “Nondefault Ports Now Usable for External Mode on Tornado Platform”
on page 9-28

• “Initialize Block Outputs Even If No Block Output Has Storage Class Auto”
on page 9-28

• “Code Is Generated Without Errors for Single Precision Data Type Block
Outputs” on page 9-28

• “Duplicate #include Statements No Longer Generated” on page 9-28

• “Custom Storage Classes Ignored When Unlicensed for Embedded Coder ”
on page 9-28

• “Erroneous Sample Time Warning Messages No Longer Issued” on page
9-29

• “Discrete Integrator Block with Rolled Reset No Longer Errors Out” on
page 9-29

• “Rate Limiter Block Code Generation Limitation Removed” on page 9-29

• “Multiport Switch with Expression Folding Limitation Removed” on page
9-29

• “Pulse Generator Code Generation Failures Rectified” on page 9-29

• “Stateflow I/O with ImportedExternPointer Storage Class Now Handled
Correctly” on page 9-30

• “Parameters for S-Function Target Lookup Blocks May Now Be Made
Tunable” on page 9-30

• “PreLookup Index Search Block Now Handles Discontiguous Wide Input”
on page 9-30

• “SimViewingDevice Subsystem No Longer Fails to Generate Code” on page
9-30

• “Accelerator Now Works with GCC Compiler on UNIX” on page 9-30

• “Expression Folding Behavior for Action Subsystems Stabilized” on page
9-30

• “Dirty Flag No Longer Set During Code Generation” on page 9-31

• “Subsystem Filenames Now Completely Checked for Illegal Characters”
on page 9-31

9-5

9 Real-Time Workshop 5.0 Release Notes

• “Sine Wave and Pulse Generator Blocks No Longer Needlessly Use
Absolute Time” on page 9-31

• “Generated Code for Action Subsystems Now Correctly Guards Execution
of Fixed in Minor Time Step Blocks” on page 9-31

• “Report Error when Code Generation Requested for Models with Algebraic
Loops” on page 9-32

If you are upgrading from a version earlier than Version 5.0, you should also
see the Release Notes for all versions between the version currently installed
and Version 5.0.

Upgrading from an Earlier Release
If you are upgrading from a version earlier than Version 5.0, review the
following notes. You should also see the Release Notes for all versions between
the version currently installed and Version 5.0.

• “Replacing Obsolete Header File #includes” on page 9-33

• “Custom Code Blocks Moved from Simulink Library” on page 9-33

• “Updating Custom TLC Code” on page 9-34

• “Upgrading Customized GRT and GRT-Malloc Targets to Work with
Release 13” on page 9-34

9-6

New Features and Enhancements

New Features and Enhancements
This section introduces the new features and enhancements added in the
Real-Time Workshop 5.0 since the Real-Time Workshop 4.1. A number of
enhancements to Simulink that can impact code generation are also described.

Note For information about closely related products that extend the
Real-Time Workshop, see the Release Notes for those products.

Code Generation Infrastructure Enhancements

Code for Nonvirtual Subsystems Is Now Reusable
Real-Time Workshop 5.0 alters certain aspects of generated code to implement
the capability to reuse code for nonvirtual subsystems. You have the ability to
select or override this feature, as well as to specify function and file names
from the Real-time Workshop GUI.

In prior releases, each nonvirtual subsystem in a model generated a separate
block of code. In some circumstances—for example, when a library block
is used multiple times in the same fashion—it is possible to generate a
single shared function for the block and call that function multiple times.
Consolidating code in this fashion can significantly improve the size and
efficiency of generated code.

To implement code reuse, the Real-Time Workshop must pass in appropriate
data elements (as function arguments) for each caller of a reused subsystem.
Code generated by Real-Time Workshop 5.0 enables such arguments for
functions generated for nonvirtual subsystems.

You enable code reuse through the Subsystem parameters dialog when both
Treat as atomic unit and Reusable function from the RTW system code
pull-down menu are selected, as illustrated below.

9-7

9 Real-Time Workshop 5.0 Release Notes

Reusable code will also be generated, when feasible, when you set RTW
system code to Auto. Then, if only one instance of the subsystem exists,
it will be inlined; otherwise a reusable function will be generated if other
characteristics of the model allow this.

Certain conditions may make it impossible to reuse code, causing Real-Time
Workshop to revert to another RTW system code option even though you
specify Reusable function or Auto. When Reusable function is specified
and reuse is not possible, the result will be a function without arguments.
When Auto is specified and reuse is not possible, the result will be to inline the
subsystem’s code (or in special cases, create a function without arguments).
Diagnostics are available in the HTML code generation report (if enabled; see
"“Generate HTML Report Option Available for Additional Targets” on page
9-23) to help identify the reasons why reuse is not occurring in particular
instances. In addition to providing these exception diagnostics, the HTML
report’s Subsystems section also maps each noninlined subsystem in the
model to functions or reused functions in the generated code.

9-8

New Features and Enhancements

Requirements for Generation of Reusable Code from Stateflow
Charts. To generate reusable code from a Stateflow chart, or from a
subsystem containing a Stateflow chart, all of the following conditions must
be met:

• The chart (or subsystem containing the chart) must be a library block (see
“Working with Block Libraries” in the Simulink documentation).

• Data in the chart must not be initialized from workspace. The data
property Initialize from workspace should be off.

• The chart must not output a function call.

See “Nonvirtual Subsystem Code Generation” in the Real Time Workshop
documentation for more details.

Packaging of Generated Code Files Simplified
The packaging of generated code into.c and.h files has changed. The following
table summarizes the structure of source code generated by the Real-Time
Workshop. All code modules described are written to the build directory.

Note The file packaging of the Real-Time Workshop Embedded Coder differs
slightly (but significantly) from the file packaging described here. See “Data
Structures and Code Modules” in the Real-Time Workshop Embedded Coder
User’s Guide for more information.

9-9

9 Real-Time Workshop 5.0 Release Notes

Real-Time Workshop File Packaging

File Description

model.c Contains entry points for all
code implementing the model
algorithm (MdlStart, MdlOutputs,
MdlUpdate, MdlInitializeSizes,
MdlInitializeSampleTimes). Also contains
model registration code.

model_private.h Contains local defines and local data that
are required by the model and subsystems.
This file is included by subsystem.c
files in the model. You do not need to
include model_private.h when interfacing
handwritten code to a model.

model.h Defines model data structures and a public
interface to the model entry points and data
structures. Also provides an interface to the
real-time model data structure (model_rtM)
via access macros. model.h is included by
subsystem.c files in the model.
If you are interfacing your handwritten code
to generated code for one or more models,
you should include model.h for each model to
which you want to interface.

model_data.c
(conditional)

model_data.c is conditionally generated. It
contains the declarations for the parameters
data structure and the constant block I/O
data structure. If these data structures are
not used in the model, model_data.c is not
generated. Note that these structures are
declared extern in model.h.

9-10

New Features and Enhancements

Real-Time Workshop File Packaging (Continued)

File Description

model_types.h Provides forward declarations for the
real-time model data structure and the
parameters data structure. These may be
needed by function declarations of reusable
functions. model_types.h is included by all
subsystem.h files in the model.

rtmodel.h Contains #include directives required
by static main program modules such as
grt_main.c and grt_malloc_main.c. Since
these modules are not created at code
generation time, they include rt_model.h
to access model-specific data structures
and entry points. If you create your own
main program module, take care to include
rtmodel.h.

model_pt.c (optional) Provides data structures that enable a
running program to access model parameters
without use of external mode.

model_bio.c (optional) Provides data structures that enable your
code to access block outputs.

If you have interfaced handwritten code to code generated by previous
releases of the Real-Time Workshop, you may need to remove dependencies on
header files that are no longer generated. Use #includemodel.h directives,
and remove #include directives referencing any of the following:

• model_common.h (replaced by model_types.h and model_private.h)

• model_export.h (replaced by model.h)

• model_prm.h (replaced by model_data.c)

• model_reg.h (subsumed by model.c)

9-11

9 Real-Time Workshop 5.0 Release Notes

Most Targets Use rtModel Instead of Root SimStruct
The GRT, GRT-Malloc, ERT, and Tornado targets now use the rtModel data
structure to store information about the root model. In prior releases, this
information was stored in the SimStruct data structure. Since the SimStruct
data structure was also used by noninlined S-functions, it contained a number
of S-function fields that were not needed to represent root model information.
The new rtModel is a lightweight data structure that eliminates these
unused fields in representing the root model. Fields in the rtModel capture
model-wide information pertaining to timing, solvers, logging, model data
(such as block I/O, and DWork, parameters), etc. To generate code for the ERT
target, the rtModel data structure is further pruned to contain only those
fields that are relevant to the model under consideration.

Note If you have previously customized GRT, GRT-Malloc, or Tornado targets,
you should upgrade each customized target to use the rtModel instead of
the SimStruct. You can find guidelines for this upgrade path in “Upgrading
Customized GRT and GRT-Malloc Targets to Work with Release 13” on page
9-34.

Hook Files for Communicating Target-specific Word
Characteristics
In order to communicate details about target hardware characteristics,
such as word lengths and overflow behavior, you now need to supply
an M-file named target_rtw_info_hook.m. Each system target file
needs to implement a hook file. For GRT (grt.tlc), for example, the file
must be named grt_rtw_info_hook.m, and needs to be on the MATLAB
path. If the hook file is not provided, default values based on the host’s
characteristics will be used, which may not be appropriate. For an example,
see toolbox/rtw/rtwdemos/example_rtw_info_hook.m. In addition, note
that the TLC directive %assign DSP = 1 no longer has any effect. You need to
provide a hook file instead.

9-12

New Features and Enhancements

Code Generation Unified for Real-Time Workshop and
Stateflow
In earlier releases, code generated from Stateflow charts in a model was
written to source code files distinct from the source code files (such as model.c,
model.h, etc.) generated from the rest of the model.

Now, by default, Stateflow no longer generates any separate files from the
Real-Time Workshop. In addition, Stateflow generated code is seamlessly
integrated with other generated code. For example, all Stateflow initialization
code is now inlined.

You can override the default and instruct the Real-Time Workshop to generate
separate functions, within separate code files, for a Stateflow chart. To do
this, use the RTW system code options in the Block parameters dialog
of the Stateflow chart (see “Nonvirtual Subsystem Code Generation” in the
Real-Time Workshop documentation). You can control both the names of the
functions and of the code files generated.

Conditional Input Branch Execution Optimization
This release introduces a new optimization called conditional input branch
execution, speeding simulation and execution of code generated from the
model. Previously, when simulating models containing Switch or Multiport
Switch blocks, Simulink executed all blocks required to compute all inputs
to each switch at each time step. In this release, Simulink, by default,
executes only the blocks required to compute the control input and the data
input selected by the control input at each time step. Likewise, standalone
applications generated from the model by Real-Time Workshop execute only
the code needed to compute the control input and the selected data input. To
explore this feature, look at the coninputexec demo.

Code Generation Configuration Features

Diagnostics Pane Items Classified into Logical Groups
To make selecting diagnostics easier, the Diagnostics entries on the
Simulation Parameters dialog have been reorganized according to
functionality, and alphabetically within each group, as shown below.

9-13

9 Real-Time Workshop 5.0 Release Notes

Comments Not Generated for Reduced Blocks When "Show
eliminated statements" Is Off
The Show eliminated statements option (in the Real-Time Workshop
General code generation options category) is now off by default. As
long as it remains off, Real-Time Workshop no longer generates comments
referring to blocks that have been removed from the model via block reduction
optimization.

New General Code Appearance Options
A new category has been added to the Real-Time Workshop dialog,
named General code appearance options. This pane adds four new code
formatting options to two existing options that formerly occupied other
categories. The General code appearance dialog is shown below.

9-14

New Features and Enhancements

The Maximum identifier length field allows you to limit the number of
characters in function, type definition, and variable names. The default is 31
characters, but Real-Time Workshop imposes no upper limit.

Selecting Include data type acronym in identifier enables you to prepend
acronyms such as i32 (for long integers) to signal and work vector identifiers
to make code more readable. The default is not to include data type acronyms
in identifiers.

The Include system hierarchy number in identifiers option, when
selected, prefixes s#_, where # is a unique integer subsystem index, to
identifiers declared in that subsystem. This enhances traceability of code,
for example via the hilite_system<`S#'> command. The default is not to
include a system hierarchy index in identifiers.

The Prefix model name to global identifiers check box is a new option
that is ON by default. When this option is on, Real-Time Workshop prefixes
subsystem function names with the name of the model (model_). The model
name is also prefixed to the names of functions and data structures at the
model level, when appropriate to the code format. This is useful when
you need to compile and link code from two or more models into a single
executable, as it avoids potential name clashes.

9-15

9 Real-Time Workshop 5.0 Release Notes

You can now exercise control over the code style for inlined parameters
through a new pull-down menu, Generate scalar inline parameters
as:[literals | macros]. When constant parameters are inlined and
declared not tunable, the following code generation options are available:

• Vector parameters were formerly stored as constant parameters in rtP
vectors. Now they are declared as constant vectors of appropriate type,
independent of rtP.

• Scalar parameters were formerly inlined as literals. In addition to this
approach, users now have the option to have scalar parameters expressed
as #define macro definitions.

The default is to generate scalar inline parameters as literals.

Note S-functions can mark a run-time parameter as being constant in
order to guarantee that it never ends up in the rtP data structure. Use
ssSetConstRunTimeParamInfo in the S-function to register a constant
run-time parameter.

Generate comments is an existing global option that was moved from the
General code generation options (cont) category to this one. As in the
prior release, the default for Generate comments is ON.

Identifier Construction for Generated Code Has Been Simplified
The methods which Real-Time Workshop uses to construct identifiers for
variables and functions have been enhanced to make identifiers more
understandable and more customizable. As a result of these enhancements

• Changes to sections of the model do not cause identifiers elsewhere to
change.

• Reused function input arguments now derive their name from the inport
block.

• Subsystem function names can be prefixed by the model name to prevent
link errors due to name conflicts.

• Users may specify maximum identifier length (can be > 31 characters).

9-16

New Features and Enhancements

• A new option exists to include a data type acronym in identifiers.

• Use of _a, _b, ... postfixes to identifiers to prevent name clashes has been
dramatically reduced.

See also “New General Code Appearance Options” on page 9-14 for related
information.

GUI Control over Behavior of Assertion Blocks in Generated
Code
The Advanced pane of the Simulation Parameters dialog shown above also
provides you with a control to specify whether model verification blocks such
as Assert, Check Static Gap, and related range check blocks will be enabled,
not enabled, or default to their local settings. This Model Verification block
control popup menu has the same effect on code generated by Real-Time
Workshop as it does on simulation behavior, and also may be customized.

For Assertion blocks that are not disabled, the generated code for a model will
include one of the following statements

utAssert(input_signal);
utAssert(input_signal != 0.0);
utAssert(input_signal != 0);

at appropriate locations, depending on the block’s input signal type (Boolean,
real, or integer, respectively).

By default utAssert is a no-op in generated code. For assertions to abort
execution you must enable them by including a parameter in the make_rtw
command. Specify the Make command field on the Target configuration
category pane as follows:

make_rtw OPTS='-DDOASSERTS'

If you want triggered assertions to not abort execution and instead to print
out the assertion statement, use the following make_rtw variant:

make_rtw OPTS='-DDOASSERTS -DPRINT_ASSERTS'

9-17

9 Real-Time Workshop 5.0 Release Notes

Finally, when running a model in accelerator mode, Simulink will call back
to itself to execute assertion blocks instead of using generated code. Thus
user-defined callback will still be called when assertions fail.

GUI Control Over TLC %assert Directive Evaluation
Prior versions required specifying the -da Target Language Compiler
command switch in order for TLC %assert directives to be evaluated. Now
users can more conveniently trigger %assert code by selecting the Enable
TLC Assertions check box on the TLC debugging section of the Real-Time
Workshop dialog. The default state is for asserts not to be evaluated. You can
also control assertion handling from the MATLAB command window. To set
or unset assertion handling, use the following command. The default is Off.

set_param(model, 'TLCAssertion', 'on|off')

To see the current setting, use the command

get_param(model, 'TLCAssertion')

Block-level Enhancements

New Rate Transition Block
In previous releases, Zero-Order Hold and Unit Delay blocks were required to
handle problems of data integrity and deterministic data transfer between
blocks having different sample rates.

The new Rate Transition block lets you handle sample rate transitions in
multirate applications with greater ease and flexibility than the Zero-Order
Hold and Unit Delay blocks.

The Rate Transition block handles both types of rate transitions (fast to slow,
and slow to fast). When inserted between two blocks of differing sample rates,
the Rate Transition block detects the two rates and automatically configures
its input and output sample rates for the appropriate type of transition.

The Rate Transition block supports the following modes of operation:

• Protected/Deterministic: By default, the Rate Transition block operates
exactly like a Zero-Order Hold (for fast to slow transitions) or a Unit Delay

9-18

New Features and Enhancements

(for slow to fast transitions), and can replace these blocks in existing models
without any change in model performance. (There is one exception: in a
transition between a continuous block and a discrete block, a Zero-Order
Hold must be used.)

In its default mode of operation, the Rate Transition block guarantees
the integrity of data transfers and guarantees that data transfers are
deterministic.

• Protected/Non-Deterministic: In this mode, data integrity is protected by
double-buffering data transferred between rates. The blocks downstream
from the Rate Transition block always use the latest available data from
the block that drives the Rate Transition block. Maximum latency is less
than or equal to 1 sample period of the faster task.

The drawbacks of this mode are its non-deterministic timing and its use of
extra memory buffers. The advantage of this mode is its low latency.

• Unprotected/Non-Deterministic: This mode is the least safe, and is
not recommended for mission-critical applications. The latency of this
mode is the same as for Protected/Non-Deterministic mode, but memory
requirements are reduced since there is no double-buffering.

For more information on the use of the Rate Transition block with the
Real-Time Workshop, see “Sample Rate Transitions” in the Real-Time
Workshop documentation. For a description of the Rate Transition block, see
the description of the Rate Transition block in the Simulink documentation.

S-Function API Extended to Permit Users to Define DWork
Properties
The S-Function API has been extended to permit specification of an Real-Time
Workshop identifier, storage class, and type qualifier for each DWork that an
S-Function creates. The extensions consist of the following macros:

• ssGetDWorkRTWIdentifier(S,idx)

• ssSetDWorkRTWIdentifier(S,idx,val)

• ssGetDWorkRTWStorageClass(S,idx)

• ssSetDWorkRTWStorageClass(S,idx,val)

• ssGetDWorkRTWTypeQualifier(S,idx)

9-19

9 Real-Time Workshop 5.0 Release Notes

• ssSetDWorkRTWTypeQualifier(S,idx,val)

As is the case with data store memory or discrete block states, the Real-Time
Workshop identifier may resolve against a Simulink.Signal object. An
example has been added to sfundemos, in the miscellaneous category.

Lookup Table Blocks Use New Run-Time Library for Smaller
Code
Lookup Table (2-D), Lookup Table (3-D), PreLook-Up Using Index Search, and
Interpolation using PreLook-Up blocks now generate C code that targets one
of the many new specific, optimized lookup table operations in the Real-Time
Workshop run-time library. This results in dramatically smaller code size.
The library lookup functions themselves incorporate more enhancements to
the actual lookup algorithms for speed improvements for most option settings,
especially for linear interpolations.

Relay Block Now Supports Frame-based Processing
Relay blocks can now handle frame-based input signals. Each row in a
frame-based input signal is a separate set of samples in frames and each
column represents a different signal channel. The block parameters should be
scalars or row vectors whose length is equal to the number of signal channels.
The block does not allow continuous frame-based input signals.

Transport Delay and Variable Transport Delay Improvements
Code generation for models containing the Transport Delay and Variable
Transport Delay is now more space-efficient.

Storage Classes for Data Store Memory Blocks
You can now control how Data Store Memory blocks in your model are stored
and represented in the generated code, by assigning storage classes and type
qualifiers. You do this in almost exactly the same way you assign storage
classes and type qualifiers for block states. You can also associate a Data
Store Memory block with a signal object, and control code generation for the
block through the signal object.

See “Storage Classes for Data Store Memory Blocks” in the Real-Time
Workshop documentation for more information.

9-20

New Features and Enhancements

Target and Mode Enhancements

Rapid Simulation Target Now Supports Variable-Step Solvers
Executables generated for the Rapid Simulation (rsim) target are now able to
use any Simulink solver, including variable-step solvers. To use this feature,
the target system must be able to check out a Simulink license when running
the generated rsim executable. You can maintain backwards compatibility
(i.e., fixed-step solvers only, with no need to check out a Simulink license) by
selecting Use RTW fixed step solver from the Solver Selection popup
menu on the Rapid Simulation code generation options dialog. The
default solver option is Auto, which will use the Simulink solver module only
when the model requires it.

External Mode Support for Rapid Simulation Target
The Rapid Simulation target now includes full support for all features of
Simulink external mode. External mode lets you use your Simulink block
diagram as a front end for a target program that runs on external hardware
or in a separate process on your host computer, and allows you to tune
parameters and view or log signals as the target program executes.

External Mode Support for ERT
The Real-Time Workshop Embedded Coder now includes full support for
all features of Simulink external mode. External mode lets you use your
Simulink block diagram as a front end for a target program that runs on
external hardware or in a separate process on your host computer, and allows
you to tune parameters and view or log signals as the target program executes.

External Mode Supports Uploading Signals of All Storage
Classes
Signals from all storage classes, including custom, can now be uploaded in
external mode, as long as signals or parameters have addresses defined. For
example, data stored as bit fields or #defines cannot be uploaded, but few
other restrictions exist.

Expanded Support for Borland C Compilers
Real-Time Workshop supports version 5.6 of the Borland C compiler.

9-21

9 Real-Time Workshop 5.0 Release Notes

In addition, Release 13 reinstates support for Borland Version 5.2
"out-of-the-box" for all targets, except when importing Real-Time
Workshop-generated S-functions. In such instances, you will need to
designate the build directory where the S-function may be found via
the make_rtw parameter USER_INCLUDES. For example, suppose you had
generated S-function target code for model modelA.mdl in build directory
D:\modelA_sfcn_rtw and were using that S-function in model modelB.mdl.
In modelB.mdl, the Make command field of your Target configuration
category should define USER_INCLUDES as follows:

make_rtw "USER_INCLUDES=-ID:\modelA_sfcn_rtw"

TLC, model.rtw, and Library Enhancements

New Simulink Data Object Properties Mapped to model.rtw
Files
Simulink data objects include several new string properties that can be
exploited for customizing code generation. These properties are:

Simulink.Data.Description
Simulink.Data.DocUnits
RTWInfo.Alias

In this release the Simulink engine does not make use of these properties
nor does the Target Language Compiler. The properties are included in the
model.rtw file and are reserved for future use. RTWInfo.Alias defines the
identifier to be used in place of the parent data object (parameter, signal, or
state) in the code. The engine checks that the alias is uniquely used by only
that object.

SPRINTF Built-in Function Added to TLC
A C-like sprintf formatting function has been added which returns a TLC
string encoded with data from a variable number of arguments.

$assign str = SPRINTF(format,var,...) formats the data in variable var
(and in any additional variable arguments) under control of the specified
format string, and returns a string variable containing the values. Operates

9-22

New Features and Enhancements

like C library sprintf(), except that output is the return value rather than
contained in an argument to sprintf.

LCC Now Links Libraries in Directory sys/lcc/lib
The template makefiles have been updated to include linking against
sys/lcc/lib.

The BlockInstanceData Function has been Deprecated
S-function TLC files should no longer use the BlockInstanceData method. All
data used by a block should be declared using data type work vectors (DWork).

New %filescope Directive Added
A new directive, %filescope, can be used to limit the scopes of variables to
the files they are defined in. All variables defined after the appearance of
%filescope in a file will have this property; otherwise, they will default to
global variables.

Global Variables Accessible Using :: Operator
Use of the :: operator to access global variables is now allowed in TLC files.
Variables defined on the command line and records read from model.rtw files
will remain global variables. Nested include files cannot access variables
local to the file that included them.

Documentation Enhancements

Generate HTML Report Option Available for Additional Targets
In earlier releases, the Generate HTML report option was available only
for the Real-Time Workshop Embedded Coder. In the current release, the
report is available for all targets (except the S-Function target and the Rapid
Simulation target).

The Generate HTML report option is now located in the General code
generation options category of the Real-Time Workshop page of the
Simulation Parameters dialog, as shown in the picture below.

9-23

9 Real-Time Workshop 5.0 Release Notes

The option is on by default. Note that an abbreviated report is generated if
you do not have Real-Time Workshop Embedded Coder installed.

Expression Folding API Documentation Available
The expression folding API has been documented, and is now promoted for
customer use, particularly for user-written, inlined S-functions. In addition,
expanded capabilities are available that support the TLC user control variable
(ucv) in %roll directives, and enable expression folding for blocks such as
Selector. See “Writing S-Functions That Support Expression Folding” in the
Real-Time Workshop documentation.

Real-Time Workshop Documentation
The “Real-Time Workshop User’s Guide” has been significantly updated
and reorganized for Version 5.0. Information pertaining to data structures
and subsystems has been updated and made more accessible, and new
features and GUI changes have been documented. In addition, a new printed
and online introductory volume exists, “Getting Started with Real-Time
Workshop”. This document explains basic Real-Time Workshop concepts,
organizes tutorial material for easier access, and cross-references more
detailed explanations in the User’s Guide.

9-24

New Features and Enhancements

Target Language Compiler Documentation
The Target Language Compiler Reference Guide has been significantly
updated and reorganized for Version 5.0. A revised collection of tutorial
examples provides new users with a more grounded introduction to TLC
syntax. Documentation on the TLC Function Library and contents of
model.rtw files has also been updated.

9-25

9 Real-Time Workshop 5.0 Release Notes

Major Bug Fixes
Real-Time Workshop 5.0 includes several bug fixes made since Version 4.1.
This section describes the particularly important Version 5.0 bug fixes.

If you are upgrading from a release earlier than Version 5.0, then you should
also see the Version 4.1 “Bug Fixes” on page 10-11 and Chapter 11, “Real-Time
Workshop 4.0 Release Notes”.

• “ImportedExtern and ImportedExternPointer Storage Class Data No
Longer Initialized” on page 9-27

• “External Mode Properly Handles Systems with no Uploadable Blocks”
on page 9-27

• “Nondefault Ports Now Usable for External Mode on Tornado Platform”
on page 9-28

• “Initialize Block Outputs Even If No Block Output Has Storage Class Auto”
on page 9-28

• “Code Is Generated Without Errors for Single Precision Data Type Block
Outputs” on page 9-28

• “Duplicate #include Statements No Longer Generated” on page 9-28

• “Custom Storage Classes Ignored When Unlicensed for Embedded Coder ”
on page 9-28

• “Erroneous Sample Time Warning Messages No Longer Issued” on page
9-29

• “Discrete Integrator Block with Rolled Reset No Longer Errors Out” on
page 9-29

• “Rate Limiter Block Code Generation Limitation Removed” on page 9-29

• “Multiport Switch with Expression Folding Limitation Removed” on page
9-29

• “Pulse Generator Code Generation Failures Rectified” on page 9-29

• “Stateflow I/O with ImportedExternPointer Storage Class Now Handled
Correctly” on page 9-30

9-26

Major Bug Fixes

• “Parameters for S-Function Target Lookup Blocks May Now Be Made
Tunable” on page 9-30

• “PreLookup Index Search Block Now Handles Discontiguous Wide Input”
on page 9-30

• “SimViewingDevice Subsystem No Longer Fails to Generate Code” on page
9-30

• “Accelerator Now Works with GCC Compiler on UNIX” on page 9-30

• “Expression Folding Behavior for Action Subsystems Stabilized” on page
9-30

• “Dirty Flag No Longer Set During Code Generation” on page 9-31

• “Subsystem Filenames Now Completely Checked for Illegal Characters”
on page 9-31

• “Sine Wave and Pulse Generator Blocks No Longer Needlessly Use
Absolute Time” on page 9-31

• “Generated Code for Action Subsystems Now Correctly Guards Execution
of Fixed in Minor Time Step Blocks” on page 9-31

• “Report Error when Code Generation Requested for Models with Algebraic
Loops” on page 9-32

ImportedExtern and ImportedExternPointer Storage
Class Data No Longer Initialized
Real-Time Workshop now reverts to its previous behavior of not initializing
data whose storage class is ImportedExtern or ImportedExternPointer.
Such initializations are the external code’s responsibility.

External Mode Properly Handles Systems with no
Uploadable Blocks
Connecting to systems with no uploadable blocks in external mode used to
fail and cause Simulink to act as though a simulation was running when
none was. The only way to kill the model was to kill MATLAB. Connecting to
these systems now will display a warning in the MATLAB command window
and then run normally.

9-27

9 Real-Time Workshop 5.0 Release Notes

Nondefault Ports Now Usable for External Mode on
Tornado Platform
In the prior release a bug prevented the use of any but the default port to
connect to a Tornado (VxWorks) target via external mode. The problem has
been fixed and that configuration now works as documented.

Initialize Block Outputs Even If No Block Output Has
Storage Class Auto
Previously, block outputs were initialized only if at least one block output had
storage class auto. Now even if there are no auto Block I/O entries, exported
globals and custom signals will be initialized.

Code Is Generated Without Errors for Single Precision
Data Type Block Outputs
In cases where a reused block outputs entry is the first single-precision data
type block output in the full list of block outputs in the model, Real-Time
Workshop now operates without reporting errors. See the Simulink Release
Notes for related single-precision block enhancements.

Duplicate #include Statements No Longer Generated
Real-Time Workshop now creates a unique list of C header files before
emitting #include statements in the model.h file (formerly placed in
model_common.h). For backwards compatibility, the old text buffering method
for includes is still available for use, but can cause multiple includes in the
generated code. You should update your custom code formats to use the
(S)LibAddToCommonIncludes() functions instead of LibCacheIncludes(),
which has been deprecated.

Custom Storage Classes Ignored When Unlicensed
for Embedded Coder
If a user loads a model that uses custom storage classes, and the user is not
licensed for Embedded Coder, the custom storage class is ignored (storage
class reverts to auto) and a warning is produced. Previously, this situation
would have generated an error.

9-28

Major Bug Fixes

Erroneous Sample Time Warning Messages No
Longer Issued
Erroneous warnings regarding sample times not being in the sample time
table for models that contain a variable sample time block and a fixed step
solver are no longer issued during model compilation.

Discrete Integrator Block with Rolled Reset No Longer
Errors Out
Simulink Accelerator / Real-Time Workshop used to error out if they had a
Discrete Integrator block configured in ’ForwardEuler’, non-level external
reset, and the reset signal was a ’rolled’ signal (having a width greater than
5). This has been fixed.

Rate Limiter Block Code Generation Limitation
Removed
Simulink Accelerator will now generate code for variable-step solver models
that contain a rate limiter block inside an atomic subsystem.

Multiport Switch with Expression Folding Limitation
Removed
Simulink Accelerator and Real-Time Workshop no longer generate a Fatal
Error for Multiport Switch when expression folding is enabled.

Pulse Generator Code Generation Failures Rectified
Several problems with code generation for the pulse generator block have
been eliminated:

• If the block type is PulseGenerator instead of Discrete PulseGenerator,
code can now be generated.

• The scalar expansion for the delay variable is now correct.

• The start function for the Time-based mode in a variable-step solver now
can generate code.

Note: The first two problems also affected the Simulink Accelerator.

9-29

9 Real-Time Workshop 5.0 Release Notes

Stateflow I/O with ImportedExternPointer Storage
Class Now Handled Correctly
Stateflow input pointers for signals of ImportedExternPointer storage class
are now correctly initialized, and no longer error out for charts producing
output signals that are nonscalar and of ImportedExternPointer storage class.

Parameters for S-Function Target Lookup Blocks May
Now Be Made Tunable
The S-Function target code will now compile for models having lookup and
Lookup Table (2-D) blocks when parameters for those blocks are tunable.

PreLookup Index Search Block Now Handles
Discontiguous Wide Input
The PreLookup Index Search block formerly only generated code for signals
from the first roll region of discontiguous wide inputs, such as from a Max
block. This has been fixed.

SimViewingDevice Subsystem No Longer Fails to
Generate Code
Code generation no longer aborts for atomic subsystems configured with
SimViewingDevice=on.

Accelerator Now Works with GCC Compiler on UNIX
The previous version of the Accelerator did not work when the user selected
the gcc compiler with mex -setup. The Accelerator now supports using the
gcc compiler on UNIX systems.

Expression Folding Behavior for Action Subsystems
Stabilized
When a model contains an action subsystem (e.g., a for loop or while iterator
subsystem) and expression folding is enabled, invalid or inefficient code
sometimes was generated for the model. This problem has been fixed.

9-30

Major Bug Fixes

Dirty Flag No Longer Set During Code Generation
In previous releases a model would be marked as dirty during the code
generation process and the status would be restored when the process was
finished. With this release the model’s dirty status does not change during
code generation.

Subsystem Filenames Now Completely Checked for
Illegal Characters
In previous releases it was possible to specify a subsystem filename that
contained illegal (non-alphanumeric) characters, if the name was long enough
and the invalid characters were toward the end of the string. In this release
this bug has been fixed, and the entire character string is now validated.

Sine Wave and Pulse Generator Blocks No Longer
Needlessly Use Absolute Time
Previously, code generated for the Sine Wave and Pulse Generator blocks
accessed absolute time when the blocks were configured as sample based.
This access is not necessary and its overhead has been removed from the
generated code.

Generated Code for Action Subsystems Now
Correctly Guards Execution of Fixed in Minor Time
Step Blocks
All blocks contained in an action subsystem must have the same rate unless
some are continuous and some are fixed in minor step (a.k.a. zoh continuous).
If there are both continuous and fixed in minor step blocks then the generated
code needs to guard the code for the fixed in minor time step blocks to protect
it from being executed in minor time steps.

These guards were not being generated causing some models to have wrong
answers and consistency failures. This problem has been fixed and the guards
are now generated.

Note This is also a fix for the Simulink Accelerator.

9-31

9 Real-Time Workshop 5.0 Release Notes

Report Error when Code Generation Requested for
Models with Algebraic Loops
Real-Time Workshop does not support models containing algebraic loops.
Version 4.1 contained a bug that enabled some models having algebraic
loops to generate code which could compute incorrect answers. The models
affected were those containing no algebraic loops in their root level but having
algebraic loops in one or more subsystems. This bug has been fixed, and now
building these models will always cause an error to be reported.

9-32

Platform Limitations for HP and IBM

Platform Limitations for HP and IBM

Note The Release 12.0 platform limitation for Real-Time Workshop for the
HP and IBM platforms still apply to Release 13. That limitation is described
below.

On the HP and IBM platforms, the Real-Time Workshop opens the Release
11 Tunable Parameters dialog in place of the Model Parameter
Configuration dialog. Although they differ in appearance, both dialogs
present the same information and support the same functionality.

Upgrading from an Earlier Release
This section discusses issues involved in upgrading from Real-Time Workshop
4.1 to Version 5.0.

If you are upgrading from a version earlier than Version 4.1, you should also
see the Release Notes for all versions between the version currently installed
and Version 4.1.

Replacing Obsolete Header File #includes
Generated code is packaged into fewer files in this release (see “Packaging of
Generated Code Files Simplified” on page 9-9). If you have interfaced code to
code generated by previous releases of Real-Time Workshop, you may need to
remove dependencies on header files that are no longer generated (such as
model_common.h, model_export.h, model_prm.h, and model_reg.h) and add
#include model.h directives.

Custom Code Blocks Moved from Simulink Library
The Custom Code blocks have been removed in Real-Time Workshop version
5.0 (R13). These blocks are now located in a new library, named custcode.mdl
(type custcode to access them). Because custom code blocks are linked to this
new library, backward compatibility is assured.

9-33

9 Real-Time Workshop 5.0 Release Notes

Updating Custom TLC Code
In this release, a number of changes have been made to model.rtw files. If
your applications depend on parsing model.rtw files using customized TLC
scripts, read "model.rtw Changes Between Real-Time Workshop 5.0 and
4.1" in Appendix A of the Target Language Compiler documentation, which
describes the structure and contents of compiled models.

Upgrading Customized GRT and GRT-Malloc Targets
to Work with Release 13
Substantial changes have been made to the GRT and GRT-Malloc targets in
Release 13 to improve the efficiency of generated code. If you have customized
either type of target, you should make changes to your modified files to
ensure that your target works properly with Release 13 (Real-Time Workshop
Version 5.0).

You should begin with the versions of the target files included in this release,
and introduce all of your existing customizations to them. If you are unable
to follow this upgrade path, then you would need to perform all of the steps
outlined in sections A and B below.

A. Changes Resulting from the Replacement of SimStruct with
the rtModel
Prior to Release 13 of Real-Time Workshop, the GRT and GRT-Malloc
targets used the SimStruct data structure to capture and store model-wide
information. Since the SimStruct was also used by noninlined S-functions, it
suffered from the drawback that some of its fields remained unused when it
was used to capture root (model-wide) information. To avoid this drawback,
Version 5.0 introduces a special data structure called the rtModel to capture
root model data.

As a result, grt_main.c and grt_malloc_main.c need to be updated to
accommodate rtModel. Following are the changes that you need to make to
these files to use the rtModel instead of the SimStruct:

• Include rtmodel.h instead of simstruc.h at the top.

• Since the rtModel data structure has a type that includes the model name,
you need to include the following lines at the top of the file:

9-34

Upgrading from an Earlier Release

#define EXPAND_CONCAT(name1,name2) name1 ## name2

#define CONCAT(name1,name2) EXPAND_CONCAT(name1,name2)

#define RT_MODEL CONCAT(MODEL,_rtModel)

• Change the extern declaration for the function that creates and initializes
the SimStruct to be:

extern RT_MODEL *MODEL(void);

• Change the definitions of rt_CreateIntegrationData and
rt_UpdateContinuousStates to be as shown in the Release 13 version of
grt_main.c (or grt_malloc_main.c).

• Change all function prototypes to have the argument 'RT_MODEL' instead
of the argument 'SimStruct'.

• The prototypes for the functions rt_GetNextSampleHit,
rt_UpdateDiscreteTaskSampleHits, rt_UpdateContinuousStates,
rt_UpdateDiscreteEvents, rt_UpdateDiscreteTaskTime, and
rt_InitTimingEngine have changed. You need to change their names to
use the prefix rt_Sim instead of rt_ and then change the arguments you
pass into them.

See grt_main.c (or grt_malloc_main.c) for the list of arguments that
need to be passed into each function.

• You need to modify the all macros that refer to the SimStruct to now refer
to the rtModel. Examples of these modifications include changing

- ssGetErrorStatus to rtmGetErrorStatus

- ssGetSampleTime to rtmGetSampleTime

- ssGetSampleHitPtr to rtmGetSampleHitPtr

- ssGetStopRequested to rtmGetStopRequested

- ssGetTFinal to rtmGetTFinal

- ssGetT to rtmGetT

In addition to the changes to the main C files, you need to change the target
TLC file and the template make files.

9-35

9 Real-Time Workshop 5.0 Release Notes

• In your template make file, you need to define the symbol USE_RTMODEL.
See one of the GRT or GRT-Malloc template make files for an example.

• In your target TLC file, you need to add the following global variable
assignment:

%assign GenRTModel = TLC_TRUE

B. Changes Resulting from Moving the Logging Code to the
Real-Time Workshop Library:
In Release 13, all the support functions used for logging data have been
moved from rtwlog.c to the Real-Time Workshop library. As a result, you
need to make the following changes to ensure compatibility with the new
logging functions:

• Remove rtwlog.c from all of your template make files.

• In your target’s main C file (which was derived from grt_main.c or
grt_malloc_main.c), include rt_logging.h instead of rtwlog.h.

• In your target’s main C file (which was derived from grt_main.c or
grt_malloc_main.c), you need to change the calls to the logging related
functions because the prototypes of these functions have changed. See
grt_main.c (or grt_malloc_main.c) for the list of arguments that needs
to be passed into each function.

The BlockInstanceData Function has been Deprecated
S-function TLC files should no longer use the BlockInstanceData method. All
data used by a block should be declared using data type work vectors (DWork).

9-36

10

Real-Time Workshop 4.1
Release Notes

10 Real-Time Workshop 4.1 Release Notes

Release Summary
Real-Time Workshop 4.1 includes significant new and enhanced features and
many improvements in the quality of generated code, including:

• Expression folding, which increases code efficiency and decreases code
usage

• External mode support for inlined parameters

• Block states can now be interfaced to externally written code, in a manner
similar to signals

• New debugger for Target Language Compiler (TLC) programs

• Support for new Simulink blocks, including control flow constructs such as
do-while, for, and if

• Numerous bug fixes

10-2

New Features

New Features
This section introduces the new features and enhancements added in the
Real-Time Workshop 4.1 since the Real-Time Workshop 4.0.

For information about Real-Time Workshop features that are incorporated
from recent releases, see “Release Summary” on page 10-2.

Note For information about closely related products that extend the
Real-Time Workshop, see the Release Notes for those products.

Block Reduction Option On by Default
The Block reduction option (on the Advanced page of the Simulation
Parameters dialog) is now turned on by default. In prior releases, this option
was off by default.

Block reduction collapses certain groups of blocks into a single, more
efficient block, or removes them entirely. This results in faster model
execution during simulation and in generated code.

See “Block Reduction Optimization” in the Real-Time Workshop
documentation for more information.

Buffer Reuse Code Generation Option
The Buffer reuse option is now available via the General Code Generation
Options (cont.) category of the Real-Time Workshop page. When the Buffer
reuse option is selected, signal storage is reused whenever possible.

In previous releases, this option was available only through MATLAB
set_param and get_param commands, such as:

set_param(gcs,'bufferreuse','on')

The set_param and get_param commands are still supported.

See the Real-Time Workshop documentation for more information.

10-3

10 Real-Time Workshop 4.1 Release Notes

Build Directory Validation
The build process now disallows building programs in the MATLAB directory
tree. If you attempt to generate code in the MATLAB directory tree, an error
message will be displayed prompting you to change to a working directory
that is not in the MATLAB directory tree. On a PC, you can continue to build
in the directory matlabroot/Work.

The build process also prevents building programs when matlabroot has a
dollar sign ($) in its MATLAB directory name.

Build Subsystem Enhancements
The Build Subsystem feature, introduced in Real-Time Workshop 4.0, lets
you generate code and build an executable from any nonvirtual subsystem
within a model. In Real-Time Workshop 4.1, the Build Subsystem feature
has been enhanced as follows:

• The Build Subsystem window now displays additional information about
block parameters referenced by the subsystem.

• From the Build Subsystem window, you can now inline any parameter or
set the storage class of any parameter.

See “Generating Code and Executables from Subsystems” in the Real-Time
Workshop Documentation for more information.

C API for Parameter Tuning Documented
Real-Time Workshop provides data structures and a C API that enable a
running program to access model parameters without use of external mode.

To access model parameters via the C API, you generate a model-specific
parameter mapping file, model_pt.c. This file contains parameter mapping
arrays containing information required for parameter tuning.

See “C-API for Parameter Tuning and Signal Monitoring” in the Real-Time
Workshop documentation for information on how to generate and use the
parameter mapping file.

10-4

New Features

Code Readability Improvements
Improvements to the readability of generated code include:

• Elimination of redundant parentheses.

• Long C statements in the generated code are now split across multiple lines.

• Block comments are more informative.

Control Flow Blocks Support
Simulink 4.1 implements a number of blocks that support logic constructs
such as if-else and switch, and looping constructs such as do-while, for, and
while. The Real-Time Workshop 4.1 supports code generation from these
blocks.

For more information on the control flow blocks, see “Modeling with Control
Flow Blocks” in the Simulink documentation.

Expression Folding
Expression folding is a code optimization technique that minimizes the
computation of intermediate results at block outputs, and the storage of such
results in temporary buffers or variables. Wherever possible, the Real-Time
Workshop collapses, or "folds," block computations into single expressions,
instead of generating separate code statements and storage declarations for
each block in the model.

Expression folding dramatically improves the efficiency of generated code,
frequently achieving results that compare favorably to hand-optimized code.
In many cases, model computations fold into a single highly optimized line
of code.

Most Simulink blocks support expression folding.

For more information, see “Expression Folding” in the Real-Time Workshop
documentation.

10-5

10 Real-Time Workshop 4.1 Release Notes

External Mode Enhancements

Inline Parameters Support
The Real-Time Workshop now lets you use the Inline parameters code
generation option when building an external mode target program. When
you inline parameters, you can use the Model Parameter Configuration
dialog to remove individual parameters from inlining and declare them to
be tunable. This allows you to improve overall efficiency by inlining most
parameters, while at the same time retaining the flexibility of run-time
tuning for selected parameters that are important to your application. In
addition, the Model Parameter Configuration dialog offers you options for
controlling how parameters are represented in the generated code.

Each time Simulink connects to a target program that was generated with
Inline parameters on, the target program uploads the current value of its
tunable parameters (if any) to the host. These values are assigned to the
corresponding MATLAB workspace variables. This procedure ensures that
the host and target are synchronized with respect to parameter values.

All targets that support external mode (i.e., grt, grt_malloc, and Tornado)
now allow inline parameters.

See “External Mode Communications Overview” in the Real-Time Workshop
documentation for more information.

Status Bar Display
When Simulink is connected to a running external mode target program,
the simulation time and other status bar information is now displayed and
updated just as it would be in normal mode.

Generate Comments Option
This option lets you control whether or not comments are written in the
generated code. See “Comments Options” in the Real-Time Workshop
documentation for more information.

10-6

New Features

Include System Hierarchy in Identifiers
When this option is on, the Real-Time Workshop inserts system identification
tags in the generated code (in addition to tags included in comments). The
tags help you to identify the nesting level, within your source model, of the
block that generated a given line of code.

See “How Symbols Are Formatted in Generated Code” in the Real-Time
Workshop documentation for more information.

Rapid Simulation Target Supports Inline Parameters
The Rapid Simulation Target now works with Inline parameters on. Note
that when Inline parameters is on, the storage class for all parameters
and signals is silently forced to auto.

S-Function Target Enhancements
The S-Function Target Generate S-function feature, introduced in
Real-Time Workshop 4.0, lets you generate an S-function from a subsystem.
This feature has been enhanced as follows:

• The Generate S-function window now displays additional information
about block parameters referenced by the generating subsystem.

• If you have installed and licensed the Real-Time Workshop Embedded
Coder, the Generate S-function window lets you invoke the Embedded
Coder to generate an S-function wrapper.

See “Automated S-Function Generation” in the Real-Time Workshop
documentation for details.

Storage Classes for Block States
For certain block types, the Real-Time Workshop lets you control how block
states in your model are stored and represented in the generated code. Using
the State Properties dialog, you can:

• Control whether or not states declared in generated code are interfaceable
(visible) to externally written code. You can also specify that signals are to
be stored in locations declared by externally written code.

10-7

10 Real-Time Workshop 4.1 Release Notes

• Assign symbolic names to block states in generated code.

For more information, see “Block States: Storing and Interfacing” in the
Real-Time Workshop documentation.

Support for tilde (~) in Filenames on UNIX Platforms
All filename fields in Simulink now support the mapping of the tilde (~)
character in filenames. For example, in a To File block you can specify
<code>~/outdir/file.mat</code>. On most systems, this will expand to
/home/$USER/outdir/file.mat. The Real-Time Workshop uses the expanded
names.

Target Language Compiler 4.1
This section summarizes changes that have been made to the Target Language
Compiler in this release. See also “TLC Compatibility Issues” on page 10-16.

New TLC Debugger
The TLC debugger helps you identify programming errors in your TLC code.
The debugger lets you set breakpoints in your TLC code, execute TLC code
line-by-line, examine and change variables, and perform many other useful
operations.

The TLC debugger operates during code generation, incurring almost no
overhead in the code generation process. You can invoke the debugger:

• By selecting options in the TLC debugging options category of the
Real-Time Workshop page

• By including %breakpoint statements in your TLC file.

• By using the MATLAB tlc command, as in

tlc -dc <options>

• By using the -dc build option in the System target file field of the
Real-Time Workshop page.

10-8

New Features

For more information, see “Debugging TLC Files” in the Target Language
Compiler documentation.

model.rtw File Format Changes
The format of the model.rtw file has changed. See “TLC Compatibility
Issues” on page 10-16.

Cleanup of Block I/O Connection Handling in TLC
The handling of signal connections in rtw/c/tlc/blkiolib.tlc and
rtw/ada/tlc/blkiolib.tlc was reworked. See the description of
LibBlockInputSignal in the Target Language Compiler documentation.

Literal String Support
If a string constant is preceded by an L format specifier (as in L"string"),
Target Language Compiler performs no escape character processing on that
string. This is useful for specifying PC-style paths without using double
backslash characters.

%addincludepath L"C:\mytlc"

The following examples are equivalent.

• L"d:\this\is\a\path"

• "d:\\this\\is\\a\\path"

New TLC Library Functions
The following functions have been added to the TLC Function Library:

• LibBlockInputSignalConnected

• LibBlockInputSignalLocalSampleTimeIndex

• LibBlockInputSignalOffsetTime

• LibBlockInputSignalSampleTime

• LibBlockInputSignalSampleTimeIndex

• LibBlockOutputSignalOffsetTime

10-9

10 Real-Time Workshop 4.1 Release Notes

• LibBlockOutputSignalSampleTime

• LibBlockOutputSignalSampleTimeIndex

• LibBlockMatrixParameterBaseAddr

• LibBlockParameterBaseAddr

• LibBlockNonSampledZC

See the Target Language Compiler documentation for information on these
functions.

TLC Bug Fixes

• Fixed a bug where local variables of calling functions were sometimes
incorrectly visible to called functions.

• The ISINF, ISNAN, and ISFINITE functions now work for complex values.

• The %filescope directive now works as documented.

• Zero indexing on complex numbers is now supported.

In prior releases, the Target Language Compiler allowed 0 indexing for
integer and real values, but not for complex values. This restriction has
been removed in the Target Language Compiler 4.1, as shown in the
following example.

%assign a = 1.0 + 3.0i
%assign b = a[0] %% zero index now allowed

• Fixed a crash that occurred if ROLL_ITERATIONS was called outside of a
%roll construct. ROLL_ITERATIONS returns NULL if called outside of a
%roll construct.

• TLC now allows use of any path separator character independent of
operating system. You can use either \ or / as a path separator character
on Unix or Windows).

• Fixed a bug in the compare for equality operation. 0.0 now compares equal
to -0.0.

10-10

Bug Fixes

Bug Fixes
The Real-Time Workshop 4.1 includes the bug fixes described in this section.
See also “TLC Bug Fixes” on page 10-10 for bug fixes specific to the Target
Language Compiler.

Block Reduction Crash Fixed
A problem that crashed MATLAB due to a segmentation fault during the
block reduction process has been fixed. This problem occurred only if the
Block Reduction option was on, and if a Scope block was connected to a
block that was removed due to block reduction.

Build Subsystem Gives Better Error Message for
Function Call Subsystems
The Build Subsystem feature does not currently support triggered
function-call subsystems. The Real-Time Workshop now gives a more
informative error message when a Build Subsystem is attempted with a
triggered function-call subsystem.

Check Consistency of Parameter Storage Class and
Type Qualifier
The Real-Time Workshop now checks for consistency of parameter storage
class and type qualifier when a parameter is specified by both the Model
Parameter Configuration dialog and a referenced Simulink data object.

Code Optimization for Unsigned Saturation and
DeadZone Blocks
When the lower limit of a Saturation or DeadZone block is a zero and is
nontunable, and the data type is unsigned, the comparison against the lower
limit is omitted from the code. Similarly, if the upper or lower limit of the
Saturation block is nontunable and nonfinite, the comparison against the
infinite limit is omitted.

10-11

10 Real-Time Workshop 4.1 Release Notes

Correct Code Generation of Fixed-Point Blockset
Blocks in DSP Blockset Models
A code generation bug involving some DSP Blockset blocks (see list below)
was fixed. When these blocks were driven by a block from the Fixed-Point
Blockset, generated code would write outside array memory bounds. The
following DSP Blockset blocks generated incorrect code:

• Delay Line

• Frame Status Conversion

• Matrix Multiply

• Multiport Selector

• Pad

• Submatrix

• Window Function

• Zero Pad

Correct Compilation with Green Hills and DDI
Compilers
Compilation errors for files associated with matrix inversion in the
matlabroot/rtw/c/libsrc directory were fixed. These errors occurred with
the Green Hills and DDI compilers.

Fixed Build Error with Models Having Names
Identical to Windows NT Commands
This fix prevents an error that occurred when building models having names
identical to Windows NT internal commands. Examples would be models
named verify or path. Such model names are now allowed.

Fixed Error Copying Custom Code Blocks
An error in the Custom Code block Copyfcn callback was fixed. The problem
caused an error when copying a custom code block within a model.

10-12

Bug Fixes

Fixed Error in commonmaplib.tlc
A typo in rev 1.17 of commonmap.tlc was fixed. This typo caused an error
during code generation, when using the grt_malloc target with External
mode selected.

Fixed Name Clashes with Run-Time Library Functions
The Real-Time Workshop now uses the macros rt_min and rt_max to avoid
clashing with run-time library min and max functions.

Improved Handling of Sample Times
The sample time handling for the S-function and ERT targets has been
improved to use the compiled sample time instead of the user specified sample
time on the input port blocks.

Look-Up Table (n-D) Code Generation Bug Fix
The Real-Time Workshop now generates correct code for Look-Up Table (n-D)
blocks having 5 or more dimensions with different dimension sizes.

Parenthesize Negative Numerics in Fcn Block
Expressions
Fcn block expressions in the generated code failed to compile in the case of a
unary operator preceding a workspace variable with a negative value, such
as the expression

-v*u

Such expressions are now enclosed in parentheses, as in

(-v) * u

Removed Unnecessary Warnings and Declarations
from Generated Code
Several unnecessary warnings and declarations in the generated code have
been removed. These include:

10-13

10 Real-Time Workshop 4.1 Release Notes

• In functions where the tid argument is not referenced, the declaration

(void)tid

is no longer generated. (The tid argument is required because the function
API is predefined.)

• Warnings involving const casts were suppressed in some of the
rtw/c/libsrc modules.

Retain .rtw File Option Now Works in Accelerator
Mode
In previous releases, the Retain .rtw file option (on the TLC Debugging
Options page of the Simulation Parameters dialog) was ignored if Simulink
was in Accelerator mode. Now, you can retain the model.rtw file during a
build, regardless of the simulation mode.

S-Function Target Memory Allocation Bug Fix
A segmentation fault during generation of S-functions was removed by fixing
the memory management of the port data structure.

10-14

Upgrading from an Earlier Release

Upgrading from an Earlier Release
This section discusses issues involved in upgrading from the Real-Time
Workshop Version 4.0 to the Real-Time Workshop Version 4.1.

For information about upgrading from a release earlier than 4.0, see
“Upgrading from an Earlier Release” on page 10-15 in the Real-Time
Workshop 4.0 Release Notes.

RTWInfo Property Changes
If you use the Simulink Data Object classes Simulink.Signal or
Simulink.Parameter, or have implemented classes derived from these, note
the following information concerning the RTWInfo properties.

In Release 12.0, the RTWInfo class had a TypeQualifier property,
corresponding to the RTW storage type qualifier field of signal ports and
parameters.

Real-Time Workshop 4.1 now supports creation of custom storage classes,
removing the need for the TypeQualifier property. You should use custom
storage classes when type qualification is needed.

By default, the TypeQualifier property of RTWInfo objects is no longer visible
in the Simulink Data Explorer. Also, the TypeQualifier property is no longer
written to ObjectProperties records in the model.rtw file. For backward
compatibility, the TypeQualifier property remains active. The property can
be set and retrieved through a direct reference. For example,

Kp.RTWInfo.TypeQualifier = 'const'

or

tq = Kp.RTWInfo.TypeQualifier

You can make the TypeQualifier property visible in the Simulink Data
Explorer for the duration of a MATLAB session. To do this, execute the
following command prior to opening the Simulink Data Explorer),

feature('RTWInfoTypeQualifier',1)

10-15

10 Real-Time Workshop 4.1 Release Notes

The above command also directs the Real-Time Workshop to include the
TypeQualifier property in ObjectProperties records in the model.rtw file.

For more information see “Simulink Data Objects and Code Generation” in
the Real-Time Workshop documentation.

S-Function Target MEX-Files Must Be Rebuilt
S-function MEX-files generated by the S-function target under Release 11
are not compatible with Release 12. The incompatibilities are due to new
features, such as parameter pooling, introduced in Release 12.0.

If you have built S-function MEX-files with the S-function target under
Release 11, you must rebuild them. See “The S-Function Target” in the
Real-Time Workshop documentation for more information.

TLC Compatibility Issues

model.rtw File Format Changes
The format of the model.rtw file has changed. For more information, see the
Target Language Compiler documentation.

Reordering of BlockTypeSetup and BlockInstanceSetup Calls
During the initialization phase of code generation, the Target Language
Compiler makes a pass over all blocks in the model and executes several
functions, including:

• Each block’s BlockTypeSetup function the first time that block type is
encountered.

• Each block’s BlockInstanceSetup function. BlockInstanceSetup is called
for all instances of a given block type in the model.

The order in which these calls are made is significant, because the
BlockInstanceSetup function may depend upon global variables that are
initialized by the BlockTypeSetup function.

10-16

Upgrading from an Earlier Release

In Release 12.1, the BlockTypeSetup function is called before the
BlockInstanceSetup. This corrects a problem in previous releases, where
BlockInstanceSetup was erroneously called first. You may need to change
your S-functions or block implementations if they depend upon the previous
behavior.

Obsolete Code Generation Variables
The code generation variables FunctionInlineType and PragmaInlineString
are now obsolete. These variables controlled the generation of inlined
functions. In the current release, you can generate inlined functions from
subsystems, as described in “Nonvirtual Subsystem Code Generation” in the
Real-Time Workshop User’s Guide.

10-17

10 Real-Time Workshop 4.1 Release Notes

10-18

11

Real-Time Workshop 4.0
Release Notes

11 Real-Time Workshop 4.0 Release Notes

Release Summary
Release 4.0 of the Real-Time Workshop is a major upgrade, incorporating
significant new and enhanced features and many improvements in the quality
of generated code. These include:

• Significantly faster Target Language Compiler (TLC) code generation
process

• TLC Profiler report for debugging TLC programs

• New efficiencies in generated code include improved signal storage reuse,
constant block elimination, and parameter pooling.

• New Real-Time Workshop Embedded Coder add-on product replaces and
significantly enhances the Embedded Real-Time (ERT) target.

• User interface improvements, including a redesigned Real-Time Workshop
page and Model Parameter Configuration (tunable parameters) dialog

• Support for additional Simulink blocks, including Look-Up table blocks
with very efficient generated code

• S-Function Target support for variable-step solvers and parameter tuning

• Support for matrix operations for most Simulink blocks

• Support for frame-based processing for DSP blocks

• External mode support for many additional block types for signal uploading

• Automatic generation of S-function wrappers for embedded code, allowing
for validation of generated code in Simulink

• Support for generation of code and executables from subsystems

• Support for Simulink data objects in code generation

• Support for generation of ASAP2 data definition files

11-2

New Features

New Features
This section introduces the new features and enhancements added in the
Real-Time Workshop 4.0 since the Real-Time Workshop 3.0.1.

Real-Time Workshop Embedded Coder
The Real-Time Workshop Embedded Coder is a new add-on product that
replaces and enhances the Embedded Real-Time (ERT) target.

The Real-Time Workshop Embedded Coder is 100% compatible with the ERT
target. In addition to supporting all previous functions of the ERT target, the
Real-Time Workshop Embedded Coder includes many enhancements.

See the Real-Time Workshop Embedded Coder documentation for details.

Simulink Data Object Support
The Real-Time Workshop supports the new Simulink data objects feature.
Simulink provides the built-in Simulink.Parameter and Simulink.Signal
classes for use with the Real-Time Workshop. Using these classes, you can
create parameter and signal objects and assign storage classes and storage
type qualifiers to the objects. These properties control how the generated
code represents signals and parameters. The Simulink.Parameter and
Simulink.Signal classes can be extended to include user-defined properties.

See “Simulink Data Objects and Code Generation” in the Real-Time Workshop
documentation for complete details.

ASAP2 Support
ASAP2 is a data definition standard proposed by the Association for
Standardization of Automation and Measuring Systems (ASAM). This
standard is used for data measurement, calibration, and diagnostic systems.

The Real-Time Workshop now lets you export an ASAP2 file containing
information about your model during the code generation process. See
“Generating ASAP2 Files” in the Real-Time Workshop documentation.

11-3

11 Real-Time Workshop 4.0 Release Notes

Enhanced Real-Time Workshop Page
The Real-Time Workshop page of the Simulation Parameters dialog has
been reorganized and made easier to use. See “Configuring Real-Time
Workshop Code Generation Parameters” in the Real-Time Workshop
documentation for complete details.

Other User Interface Enhancements
The Tools menu of the Simulink window now contains a Real-Time
Workshop submenu with shortcuts to frequently used features. See the
Real-Time Workshop documentation for details.

You can now select a target configuration from the System Target File Browser
by double-clicking on the desired entry in the target list. The previous
selection method—selecting an entry and clicking OK — is still supported.

Advanced Options Page
An Advanced options page has been added to the Simulation Parameters
dialog. The Advanced page contains new code generation options, as well as
options formerly located in the Diagnostics and Real-Time Workshop pages.

Model Parameter Configuration Dialog
The Model Parameter Configuration dialog replaces the Tunable
Parameters dialog. The Model Parameter Configuration dialog enables
you to declare individual parameters to be tunable and to control the
generated storage declarations for each parameter. See “Parameters: Storage,
Interfacing, and Tuning” in the Real-Time Workshop documentation for
details.

Tunable Expressions Supported
A tunable expression is an expression that contains one or more tunable
parameters. Tunable expressions are now supported during simulation and in
generated code.

Tunable expressions are allowed in masked subsystems. You can use tunable
parameter names or tunable expressions in a masked subsystem dialog.
When referenced in lower-level subsystems, such parameters remain tunable.

11-4

New Features

See “Tunable Expressions” in the Real-Time Workshop documentation for a
detailed description of the use of tunable parameters in expressions.

S-Function Target Enhancements
S-function target enhancements include:

• The S-function target now supports variable-step solvers.

• The S-function target now supports tunable parameters.

• The new Generate S-function feature lets you automatically generate an
S-function from a subsystem.

The S-function target is now documented in “The S-Function Target” in the
Real-Time Workshop documentation.

External Mode Enhancements
Several new features have been added to external mode:

• The default operation of the External Signal & Triggering dialog
has been changed to make monitoring the target program simpler. See
“External Signal Uploading and Triggering” in the Real-Time Workshop
documentation for details.

• Signal Viewing Subsystems have been implemented to let you encapsulate
processing and viewing of signals received from the target system. Signal
Viewing Subsystems run only on the host, generating no code in the target
system. This is useful in situations where you want to process or condition
signals before viewing or logging them, but you do not want to perform
these tasks on the target system. See “Signal Viewing Subsystems” in the
Real-Time Workshop documentation for details.

• Previously, only Scope blocks could be used in external mode to receive and
view signals uploaded from the target program. The following now support
external mode:

- Dials & Gauges Blockset

- Display blocks

- To Workspace blocks

11-5

11 Real-Time Workshop 4.0 Release Notes

- Signal Viewing Subsystems

- S-functions

See “External Mode Compatible Blocks and Subsystems” in the Real-Time
Workshop documentation for details.

• In Release 12, the external mode communications application program
interface (API) is documented. If you want to implement external mode
communications via your own low-level protocol, see “Creating an External
Mode Communication Channel” in the Real-Time Workshop documentation.

Build Directory
The Real-Time Workshop now creates a build directory within your
working directory. The build directory stores generated source code and
other files created during the build process. The build directory name,
model_target_rtw, derives from the name of the source model and the
chosen target.

See “Directories Used During the Build Process” in the Real-Time Workshop
documentation for details.

Note If you have created custom targets for the Real-Time Workshop under
Release 11, you must update your custom system target files and template
makefiles to create and utilize the build directory. See “Updating Release
11 Custom Targets” on page 11-12.

Code Optimization Features
This section describes new or modified code generation options that are
designed to help you optimize your generated code. The options described are
located on the Advanced page of the Simulation Parameters dialog.

• Block reduction: When the Block reduction option is selected,
Simulink collapses certain groups of blocks into a single, more efficient
block, or removes them entirely. This results in faster model execution
during simulation and in generated code.

11-6

New Features

• Parameter pooling: When multiple block parameters refer to storage
locations that are separately defined but structurally identical, you can use
this option to save memory.

• Signal storage reuse: This option replaces the (Enable/Disable)
Optimized block I/O storage option of previous releases. Signal storage
reuse is functionally identical to the older feature. Turning Signal
storage reuse on is equivalent to enabling Optimized block I/O storage.

See “Optimizing a Model for Code Generation” in the Real-Time Workshop
documentation for more information on code optimization.

Subsystem Based Code Generation
The Real-Time Workshop now generates code and builds an executable from
any subsystem within a model. The build process uses the code generation and
build parameters of the root model. See “Generating Code and Executables
from Subsystems” in the Real-Time Workshop documentation for details.

Nonvirtual Subsystem Code Generation
The Real-Time Workshop now lets you generate code modules at the
subsystem level. This feature applies only to nonvirtual subsystems. With
nonvirtual subsystem code generation, you control how many files are
generated, as well as the file and function names. To set options for nonvirtual
subsystem code generation, you use the subsystem’s Block Parameters
dialog.

Nonvirtual subsystem code generation is a more general and flexible method
of controlling the number and size of generated files than the Function
management code generation options (File splitting and Function
splitting) used in previous releases. The Function management code
generation options have been replaced by nonvirtual subsystem code
generation.

See “Nonvirtual Subsystem Code Generation” in the Real-Time Workshop
documentation for details.

11-7

11 Real-Time Workshop 4.0 Release Notes

Filename Extensions for Generated Files
In previous releases, some generated files were given special filename
extensions, such as .prm or .reg. All the Real-Time Workshop generated code
and header files now use standard filename extensions (.c and .h). The file
naming conventions for the following generated files have changed:

• Model registration file (formerly model.reg) is now named model_reg.h.

• Model parameter file (formerly model.prm) is now named model_prm.h.

• BlockIOSignals structure file (formerly model.bio) is now named
model_bio.c.

• ParameterTuning file (formerly model.pt) is now named model_pt.c.

• External mode data type transition file (formerly model.dt) is now named
model_dt.c.

hilite_system and Code Tracing
The Real-Time Workshop writes system/block identification tags in the
generated code. The tags are designed to help you identify the block, in your
source model, that generated a given line of code. In previous releases, the
locate_system command was used to trace a tag back to the generating block.

The new hilite_system command replaces locate_system, for the purposes
of tracing the Real-Time Workshop identification tags. You should use
the hilite_system command to trace a tag back to the generating block.
For more information on identification tags and code tracing, see “Tracing
Generated Code Back to Your Simulink Model”.

Generation of Parameter Comments
The Force generation of parameter comments option in the General
code generation options category of the Real-Time Workshop page
controls the generation of comments in the model parameter structure (rtP)
declaration in model_prm.h. This lets you reduce the size of the generated
file for models with a large number of parameters.

11-8

New Features

Borland 5.4 Compiler Support
The Real-Time Workshop now supports Version 5.4 of the Borland C/C++
compiler.

Enhanced Makefile Include Path Rules
Two new rules and macros have been added to Real-Time Workshop template
makefiles. These rules let you add source and include directories to makefiles
generated by Real-Time Workshop without having to modify the template
makefiles themselves. This feature is useful if you need to include your code
when building S-functions.

Target Language Compiler 4.0

TLC File Parsing Before Execution
The Target Language Compiler 4.0 completes parsing of the TLC file just
before execution. This aids development because syntax errors are caught the
first time the TLC file is run instead of the first time the offending line is
reached.

Enhanced Speed
The Target Language Compiler 4.0 features speed improvements throughout
the software. In particular, the speed of block parameter generation has
been enhanced.

Build Directory
The Target Language Compiler 4.0 creates and uses a build directory. The
build directory is in the current directory and prevents generated code from
clashing with other files generated for other targets, and keeps your model
directories maintenance to a minimum.

TLC Profiler
An entirely new TLC Profiler has been added to the Target Language
Compiler to help you find performance problems in your TLC code.

11-9

11 Real-Time Workshop 4.0 Release Notes

model.rtw Changes
This release contains a new format and changes to the model.rtw file. The
size of the model.rtw file has been reduced.

Block Parameter Aliases
Aliases have been added for block parameters in the model.rtw file.

Improved Text Expansion
This release of the Target Language Compiler contains new, flexible methods
for text expansion from within strings.

Column-Major Ordering
Two-dimensional signal and parameter data now use column-major ordering.

Improved Record Handling
The Target Language Compiler 4.0 utilizes new record data handling.

New TLC Language Semantics
Many changes have been made to the language including:

• Improved EXISTS behavior (see “TLC Compatibility Issues” on page 11-13)

• New TLC primitives for record handling

• Functions can return records.

• Records can be printed.

• Records can be empty.

• Record aliases are available.

• Records can be expanded with %<>.

• Built-in functions cannot be undefined via %undef.

• Short circuit evaluation for Boolean operators, %if-%elseif-%endif, and
?: expressions are handled properly

• Conversions of values to and from MATLAB.

11-10

New Features

• Enhanced conversion rules for FEVAL. You can now pass records and structs
to FEVAL.

• Relational operators can be used with nonfinite values.

• Loop control variables are local to loop bodies.

New Built-In Functions
The following built-in functions have been added to the language.

FIELDNAMES, GENERATE_FORMATTED_VALUE, GETFIELD, ISALIAS, ISEMPTY,
ISEQUAL, ISFIELD, REMOVEFIELD, SETFIELD

New Built-In Values
The following built-in values have been added to the language.

INTMAX, INTMIN, TLC_FALSE, TLC_TRUE, UINTMAX

Added Support for Inlined Code
Support has been added for two-dimensional signals in inlined code.

11-11

11 Real-Time Workshop 4.0 Release Notes

Upgrading from an Earlier Release
This section discusses issues involved in upgrading from the Real-Time
Workshop Version 3.0 to Real-Time Workshop Version 4.0.

Column-Major Matrix Ordering
The Real-Time Workshop now uses column-major ordering for two-dimensional
signal and parameter data. In previous releases, the ordering was row-major.

If your hand-written code interfaces to such signals or parameters via
ExportedGlobal, ImportedExtern, or ImportedExternPointer declarations,
make sure to review any code that relies on row-major ordering, and make
appropriate revisions.

Including Generated Files
Filename extensions for certain generated files have changed. If your
application code uses #include statements to include the Real-Time
Workshop generated files (such as model.prm), you may need to modify these
statements. See “Files Created During Build Process” in the Real-Time
Workshop documentation.

Updating Release 11 Custom Targets
If you have created custom targets for the Real-Time Workshop under Release
11, you must update your custom system target files and template makefiles
to create and utilize the build directory. See matlabroot/rtw/c/grt for
examples.

To update a Release 11 target:

1 Add the following to your system target file.

/%
BEGIN_RTW_OPTIONS
...
rtwgensettings.BuildDirSuffix = '_grt_rtw';
END_RTW_OPTIONS
%/

11-12

Upgrading from an Earlier Release

2 Add ".." to the INCLUDES rule in your template makefile. The following
example is from grt_lcc.tmf.

INCLUDES = -I. -I.. $(MATLAB_INCLUDES) $(USER_INCLUDES)

The first -I. gets files from the build directory, and the second -I.. gets
files (e.g., user written S-functions) from the current working directory.

Conceptually, think of the current directory and the build directory as the
same (as it was in Release 11). The current working directory contains
items like user written S-functions. The reason ".." must be added to the
INCLUDES rule is that make is invoked in the build directory (i.e., the
current directory was temporarily moved).

3 Place the generated executable in your current working directory. The
following example is from grt_lcc.tmf.

PROGRAM = ../$(MODEL).exe
$(PROGRAM) : $(OBJS) $(RTWLIB)
$(LD) $(LDFLAGS) -o $@ $(LINK_OBJS) $(RTWLIB) $(LIBS)

hilite_system Replaces locate_system
If you use the locate_system command, in MATLAB programs for tracing
the Real-Time Workshop system/block identification tags, you should use
hilite_system instead.

TLC Compatibility Issues
In bringing Target Language Compiler files from Release 11 to Release 12, the
following changes may affect your TLC code base:

• Nested evaluations are no longer supported. Expressions such as

%<LibBlockParameterValue(%<myVariable>,"", "", "")>

are no longer supported. You will have to convert these expressions into
equivalent non-nested expressions.

• Aliases are no longer automatically created for Parameter blocks while
reading in the Real-Time Workshop files.

11-13

11 Real-Time Workshop 4.0 Release Notes

• You cannot change the contents of a "Default" record after it has been
created. In the previous TLC, you could change a "Default" record and see
the change in all the records that inherited from that default record.

• The %codeblock and %endcodeblock constructs are no longer supported.

• %defines and macro constructs are no longer supported.

• Use of line continuation characters (... and \) are not allowed inside of
strings. Also, to place a double quote (") character inside a string, you
must use \". Previously, the Target Language Compiler allowed you to use
""" to get a double quote in a string.

• Semantics have been formalized to %include files in different contexts (e.g.,
from generate files, inside of %with blocks, etc.) %include statements are
now treated as if they were read in from the global scope.

• The previous the Target Language Compiler had the ability to split
function definitions (and other directives) across include file boundaries
(e.g., you could start a %function in one file and %include a file that had
the %endfunction). This no longer works.

• Nested functions are no longer allowed. For example,

%function foo ()
%function bar ()
%endfunction

%endfunction

• Built-in functions cannot be undefined via %undef. It is possible to undefine
built in values, but this practice is not encouraged.

• Recursive records are no longer allowed. For example,

Record1 {
Val 2
Ref Record2

}
Record2 {

Val 3
Ref Record1

}

11-14

Upgrading from an Earlier Release

• Record declaration syntax has changed. The following code fragments
illustrate the differences between declaring a record recVar in previous
versions of the Target Language Compiler and the current release.

- Previous versions:

%assign recVarAlias = recVar { ...
field1 value1 ...
field2 value2 ...
...
fieldN valueN ...

}

- Current version:

%createrecord recVar { ...
field1 value1 ...
field2 value2 ...
...
fieldN valueN ...

}

• Semantics of the EXISTS function have changed. In the previous release of
TLC, EXISTS(var) would check if the variable represented by the string
value in var existed. In the current release of TLC, EXISTS(var) checks
to see if var exists or not.

To emulate the behavior of EXISTS in the previous release, replace

EXISTS(var)

with

EXISTS("%<var>")

11-15

	toc
	Real-Time Workshop Release Notes
	Real-Time Workshop 6.3 Release Notes
	New Features and Enhancements
	New rtw_precompile_libs Function
	Support for Subsystem Latch Enhancements
	Support for Variable Transport Delay Enhancements
	C++ Target Language Support for Real-Time Windows Target and Ext
	Rapid Simulation Target Enhanced for Use with Distributed Comput
	Simulink Model and MATLAB Desktop Window Interaction Enhanced
	Documentation Enhancements

	Limitations
	C++ Target Language Limitations
	Tunable Expression Limitations
	Limitations on Specifying Data Types in the Workspace Explicitly
	Code Reuse Limitations
	Model Referencing Limitations
	External Mode Limitations
	Noninlined S-Function Parameter Type Limitations
	S-Function Target Limitations
	Goto and From Block Limitations
	Model Reference and Updating Limitations
	Unsupported Blocks

	Rapid Simulation Target Limitations
	C-API Limitations
	Simulink Block Limitations

	Major Bug Fixes
	Upgrading from an Earlier Release
	Customizations to Built-In Blocks
	Use slbuild Instead of rtwgen
	CustomStorageClass and StorageClass Properties Initialized Diffe
	rem Function No Longer Supports Tunable Arguments
	Hardware Configuration for Pre-Version 6 Models

	Known Software and Documentation Problems

	Real-Time Workshop 6.2.1 Release Notes
	Major Bug Fixes

	Real-Time Workshop 6.2 Release Notes
	New Features and Enhancements
	Model Advisor Enhancements
	Rate Transition Block Enhancements
	Data Store Read Block Enhancement
	C++ Target Language Support
	Configuring Your Compiler
	Selecting Target Language in Configuration Parameter Dialog
	Integrating C and C++ Code
	C++ Target Language Limitations

	Support for Open Watcom 1.3 Compiler
	New Configuration Option for Optimizing Floating-Point to Intege
	Task Priority Block Parameters Renamed for Consistency
	New RSim Target Configuration Option
	LibManageAsyncCounter Function Added to asynclib.tlc Library
	Enhanced Documentation on Integrating Legacy and Custom Code wit
	Documentation Improvements

	Major Bug Fixes

	Real-Time Workshop 6.1 Release Notes
	Changes from the Previous Release
	Major Bug Fixes

	Real-Time Workshop 6.0 Release Notes
	New Features
	User Interface and Configuration Enhancements
	New Model Explorer and Configuration Parameters Dialogs for Cont
	Generated Code Report Integrated into Model Explorer
	Model Advisor Helps You to Configure and Optimize Any Target
	Real-Time Workshop Now Supports Intel Compiler

	Model Referencing (Model Block) Enhancements
	Including Models as Blocks in Simulations and in Generated Code
	Model Reference Demos

	Signal, Parameter Handling and Interfacing Enhancements
	New C-API for Accessing Model Block Outputs and Parameters Data
	Back-propagating Auto, Test-pointed Signal Labels Through Subsys
	Declaring Wide Signals, States, and Parameters as ImportedExtern
	Bus Creator Blocks Now Can Emit Structures
	Minimizing Memory Requirements for Parameters and Data During Co
	New Options for Controlling Resolution of Signal Objects for Nam

	External Mode Enhancements
	External Mode Changes May Impact Customized Makefiles and Static
	Floating Scopes Now Work in External Mode
	Serial Transport Mechanism for External Mode on Windows
	Upgrading Custom Transport Layers for External Mode to Single-Ch
	New Static Memory Allocation Option for External Mode Code Gener

	Code Customization Enhancements
	Source Code for User S-Functions Now Is Easier to Include
	Custom Code Block Library Enhancements
	Combining User C++ Files with Generated Code
	Preventing User Source Code from Being Deleted from Build Direct
	Designating Target-Specific Math Functions
	Hook Files Describing Hardware Characteristics Are Deprecated

	Timing-Related Enhancements
	Application Lifespan Option Optimizes Timer Data Storage
	Enabling the Rapid Simulation Target to Time Out
	New Asynchronous Block Library
	Rate Transition Block Improvements
	Enhanced Absolute and Elapsed Time Computation
	Improved Single-Tasking Code Generation

	GRT and ERT Target Unification
	Code Format Unification
	Compatibility Issues for GRT-Based Targets
	Real-Time Workshop and Real-Time Workshop Embedded Coder Featur
	Symbol Formatting Options Replaced

	Major Bug Fixes
	Upgrading from an Earlier Release
	Global Data Identifiers for Targets Now Incorporate Model Name
	Selecting a Target Programmatically
	Accessing the rtwOptions Structure Correctly
	Defining and Displaying Custom Target Options
	SelectCallback Function for System Target Files
	Supporting the Shared Utilities Directory in the Build Process
	Model Reference Compatibility for Custom Targets
	General Considerations
	System Target File Modifications
	Template Makefile Modifications

	Macro Required in Template Make File for Tornado Target
	Custom Storage Classes Can No Longer Be Used with GRT Targets
	Accessing the Number of Sample Times from TLC for Custom Targets
	TLC TLCFILES Built-in Now Returns the Full Path to Model File Ra
	ISSLPRMREF TLC Built-in Provides Support for Parameter Sharing w
	Additional Argument for TLC GENERATE_FORMATTED_VALUE Built-in

	Known Software and Documentation Problems
	Real-Time Workshop Documentation Status
	DSP Support Documentation Error
	No Code Generation Support for 64-bit Integer Values
	Setting Environment Variable to Run Rapid Simulation Target Exec
	Limitation Affecting Rolling Regions of Discontiguous Signals
	Code Generation Failure in Nested Directories Under Windows 98
	Turn the New Wrap Lines Option Off
	ASAP2 File Generation Changes
	Custom Code in Configuration Sets Is Ignored by Certain Targets

	Real-Time Workshop 5.1.1 Release Notes
	New Features
	New -dr Command Line Switch in TLC Detects Cyclic Record Creatio

	Major Bug Fixes
	Upgrading from an Earlier Release
	Inaccessible Signal Reporting

	Real-Time Workshop 5.1 Release Notes
	Major Bug Fixes

	Real-Time Workshop 5.0.1 Release Notes
	New Features
	Expanded Hook File Options
	Hook Files for Customizing Make Commands

	Major Bug Fixes

	Real-Time Workshop 5.0 Release Notes
	Release Summary
	New Features and Enhancements
	Code Generation Infrastructure Enhancements
	Code Generation Configuration Features
	Block-Level Enhancements
	Target and Mode Enhancements
	TLC, model.rtw, and Library Enhancements
	Documentation Enhancements

	Major Bug Fixes
	Upgrading from an Earlier Release

	New Features and Enhancements
	Code Generation Infrastructure Enhancements
	Code for Nonvirtual Subsystems Is Now Reusable
	Packaging of Generated Code Files Simplified
	Most Targets Use rtModel Instead of Root SimStruct
	Hook Files for Communicating Target-specific Word Characteristic
	Code Generation Unified for Real-Time Workshop and Stateflow
	Conditional Input Branch Execution Optimization

	Code Generation Configuration Features
	Diagnostics Pane Items Classified into Logical Groups
	Comments Not Generated for Reduced Blocks When "Show eliminated
	New General Code Appearance Options
	Identifier Construction for Generated Code Has Been Simplified
	GUI Control over Behavior of Assertion Blocks in Generated Code
	GUI Control Over TLC %assert Directive Evaluation

	Block-level Enhancements
	New Rate Transition Block
	S-Function API Extended to Permit Users to Define DWork Properti
	Lookup Table Blocks Use New Run-Time Library for Smaller Code
	Relay Block Now Supports Frame-based Processing
	Transport Delay and Variable Transport Delay Improvements
	Storage Classes for Data Store Memory Blocks

	Target and Mode Enhancements
	Rapid Simulation Target Now Supports Variable-Step Solvers
	External Mode Support for Rapid Simulation Target
	External Mode Support for ERT
	External Mode Supports Uploading Signals of All Storage Classes
	Expanded Support for Borland C Compilers

	TLC, model.rtw, and Library Enhancements
	New Simulink Data Object Properties Mapped to model.rtw Files
	SPRINTF Built-in Function Added to TLC
	LCC Now Links Libraries in Directory sys/lcc/lib
	The BlockInstanceData Function has been Deprecated
	New %filescope Directive Added
	Global Variables Accessible Using :: Operator

	Documentation Enhancements
	Generate HTML Report Option Available for Additional Targets
	Expression Folding API Documentation Available
	Real-Time Workshop Documentation
	Target Language Compiler Documentation

	Major Bug Fixes
	ImportedExtern and ImportedExternPointer Storage Class Data No L
	External Mode Properly Handles Systems with no Uploadable Blocks
	Nondefault Ports Now Usable for External Mode on Tornado Platfor
	Initialize Block Outputs Even If No Block Output Has Storage Cla
	Code Is Generated Without Errors for Single Precision Data Type
	Duplicate #include Statements No Longer Generated
	Custom Storage Classes Ignored When Unlicensed for Embedded Code
	Erroneous Sample Time Warning Messages No Longer Issued
	Discrete Integrator Block with Rolled Reset No Longer Errors Out
	Rate Limiter Block Code Generation Limitation Removed
	Multiport Switch with Expression Folding Limitation Removed
	Pulse Generator Code Generation Failures Rectified
	Stateflow I/O with ImportedExternPointer Storage Class Now Handl
	Parameters for S-Function Target Lookup Blocks May Now Be Made T
	PreLookup Index Search Block Now Handles Discontiguous Wide Inpu
	SimViewingDevice Subsystem No Longer Fails to Generate Code
	Accelerator Now Works with GCC Compiler on UNIX
	Expression Folding Behavior for Action Subsystems Stabilized
	Dirty Flag No Longer Set During Code Generation
	Subsystem Filenames Now Completely Checked for Illegal Character
	Sine Wave and Pulse Generator Blocks No Longer Needlessly Use Ab
	Generated Code for Action Subsystems Now Correctly Guards Execut
	Report Error when Code Generation Requested for Models with Alge

	Platform Limitations for HP and IBM
	Upgrading from an Earlier Release
	Replacing Obsolete Header File #includes
	Custom Code Blocks Moved from Simulink Library
	Updating Custom TLC Code
	Upgrading Customized GRT and GRT-Malloc Targets to Work with Rel
	A. Changes Resulting from the Replacement of SimStruct with the
	B. Changes Resulting from Moving the Logging Code to the Real-Ti

	The BlockInstanceData Function has been Deprecated

	Real-Time Workshop 4.1 Release Notes
	Release Summary
	New Features
	Block Reduction Option On by Default
	Buffer Reuse Code Generation Option
	Build Directory Validation
	Build Subsystem Enhancements
	C API for Parameter Tuning Documented
	Code Readability Improvements
	Control Flow Blocks Support
	Expression Folding
	External Mode Enhancements
	Inline Parameters Support
	Status Bar Display

	Generate Comments Option
	Include System Hierarchy in Identifiers
	Rapid Simulation Target Supports Inline Parameters
	S-Function Target Enhancements
	Storage Classes for Block States
	Support for tilde (~) in Filenames on UNIX Platforms
	Target Language Compiler 4.1
	New TLC Debugger
	model.rtw File Format Changes
	Cleanup of Block I/O Connection Handling in TLC
	Literal String Support
	New TLC Library Functions
	TLC Bug Fixes

	Bug Fixes
	Block Reduction Crash Fixed
	Build Subsystem Gives Better Error Message for Function Call Sub
	Check Consistency of Parameter Storage Class and Type Qualifier
	Code Optimization for Unsigned Saturation and DeadZone Blocks
	Correct Code Generation of Fixed-Point Blockset Blocks in DSP Bl
	Correct Compilation with Green Hills and DDI Compilers
	Fixed Build Error with Models Having Names Identical to Windows
	Fixed Error Copying Custom Code Blocks
	Fixed Error in commonmaplib.tlc
	Fixed Name Clashes with Run-Time Library Functions
	Improved Handling of Sample Times
	Look-Up Table (n-D) Code Generation Bug Fix
	Parenthesize Negative Numerics in Fcn Block Expressions
	Removed Unnecessary Warnings and Declarations from Generated Cod
	Retain .rtw File Option Now Works in Accelerator Mode
	S-Function Target Memory Allocation Bug Fix

	Upgrading from an Earlier Release
	RTWInfo Property Changes
	S-Function Target MEX-Files Must Be Rebuilt
	TLC Compatibility Issues
	model.rtw File Format Changes
	Reordering of BlockTypeSetup and BlockInstanceSetup Calls
	Obsolete Code Generation Variables

	Real-Time Workshop 4.0 Release Notes
	Release Summary
	New Features
	Real-Time Workshop Embedded Coder
	Simulink Data Object Support
	ASAP2 Support
	Enhanced Real-Time Workshop Page
	Other User Interface Enhancements
	Advanced Options Page
	Model Parameter Configuration Dialog
	Tunable Expressions Supported
	S-Function Target Enhancements
	External Mode Enhancements
	Build Directory
	Code Optimization Features
	Subsystem Based Code Generation
	Nonvirtual Subsystem Code Generation
	Filename Extensions for Generated Files
	hilite_system and Code Tracing
	Generation of Parameter Comments
	Borland 5.4 Compiler Support
	Enhanced Makefile Include Path Rules
	Target Language Compiler 4.0
	TLC File Parsing Before Execution
	Enhanced Speed
	Build Directory
	TLC Profiler
	model.rtw Changes
	Block Parameter Aliases
	Improved Text Expansion
	Column-Major Ordering
	Improved Record Handling
	New TLC Language Semantics
	New Built-In Functions
	New Built-In Values
	Added Support for Inlined Code

	Upgrading from an Earlier Release
	Column-Major Matrix Ordering
	Including Generated Files
	Updating Release 11 Custom Targets
	hilite_system Replaces locate_system
	TLC Compatibility Issues

	tables
	Comparison of Features Licensed with Real-Time Workshop Versus R
	Real-Time Workshop File Packaging

